We analyze the dynamics of strongly nonlinear granular chains of beads in Hertzian contact with light intruders. We show that the interactions of the light intruders with solitary pulses propagating through the granular medium can be approximately studied by reduced models of the intruders with only their neighboring beads under similar excitation conditions. Studying the reduced models, we identify weakly and strongly nonlinear regimes in the dynamics, depending on the degree of compression between beads and on the occurrence of separation between neighboring beads leading to collisions. We analyze weakly and strongly nonlinear oscillatory regimes of the intruder dynamics by multiple-scale analysis, and by applying special nonsmooth coordinate transformations. When separation between beads occurs, localized transient breathers are excited, corresponding to repeated collisions of an intruder with its neighbors. This leads to high-frequency scattering energy, and to radiation of energy in the granular medium in the form of low-amplitude slowly modulated oscillatory pulses. We find that repeated excitation of localized transient breathers by an array of periodically placed intruders can result in drastic reduction of the amplitude of a solitary wave propagating through the granular medium. This indicates that this type of granular media can be designed as effective shock attenuators.

References

1.
Eleonosky
,
V.
, 1991, “
Problems of Existence of Nontopological Solitons (Breathers) for Nonlinear Klein–Gordon Equations,” Proceedings of NATO Advanced Research Workshop on Asymptotics Beyond All Orders
, La Jolla, CA.
2.
Flach
,
S.
, and
Willis
,
C. R.
, 1998, “
Discrete Breathers
,”
Phys. Rep.
,
295
, pp.
181
264
.
3.
Aubry
,
S.
, 1997, “
Breathers in Nonlinear Lattices: Existence, Linear Stability and Quantization
,”
Physica D
,
103
, pp.
201
250
.
4.
Aubry
,
S.
, 2006, “
Discrete Breathers: Localization and Transfer of Energy in Discrete Hamiltonian Nonlinear Systems
,”
Physica D
,
216
, pp.
1
30
.
5.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Y.
,
Pilipchuck
,
V.
, and
Zevin
,
A. A.
, 1996,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
6.
Nesterenko
,
V. F.
, 2001,
Dynamics of Heterogeneous Materials
,
Springer-Verlag
,
New York.
7.
Coste
,
C.
,
Falcon
,
E.
, and
Fauve
,
S.
, 1997, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
(
5
), pp.
6104
6117
.
8.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
, 2005, “
How Hertzian Solitary Waves Interact With Boundaries in a One Dimensional Granular Medium
,”
Phys. Rev. Lett.
,
94
, p.
178002
.
9.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
, 2005, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
, p.
016603
.
10.
Sen
,
S.
,
Hong
,
J.
,
Bang
,
J.
,
Avalos
,
E.
, and
Doney
,
R.
, 2008, “
Solitary Waves in the Granular Chain
,”
Phys. Rep.
,
462
, pp.
21
66
.
11.
Hascoët
,
E.
, and
Herrman
,
H. J.
, 2000, “
Shocks in Non-Loaded Bead Chains With Impurities
,”
Eur. Phys. J. B
,
14
, pp.
183
190
.
12.
Job
,
S.
,
Santibanez
,
F.
,
Tapia
,
F.
, and
Melo
,
F.
, 2009, “
Wave Localization in Strongly Nonlinear Hertzian Chains With Mass Defect
,” arXiv:0901.3532v1.
13.
Theocharis
,
G.
,
Kavousanakis
,
M.
,
Kevrekidis
,
P. G.
,
Daraio
,
C.
,
Porter
,
M. A.
, and
Kevrekidis
,
I. G.
, 2009, arXiv:0906.4094v1.
14.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
, 2006, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
, p.
026610
.
15.
Nesterenko
,
V. F.
,
Daraio
,
C.
,
Herbold
,
E. B.
, and
Jin
,
S.
, 2005, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
, p.
158702
.
16.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
, 2006, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
, p.
058002
.
17.
Porter
,
M. A.
,
Daraio
,
C.
,
Herbold
,
E. B.
,
Szelengowicz
,
I.
, and
Kevrekidis
,
P. G.
, 2008, “
Highly Nonlinear Solitary Waves in Periodic Dimer Granular Chains
,”
Phys. Rev. E
,
77
, p.
015601
(R).
18.
Herbold
,
E. B.
,
Kim
,
J.
,
Nesterenko
,
V. F.
,
Wang
,
S. Y.
, and
Daraio
,
C.
, 2009, “
Pulse Propagation in a Linear and Nonlinear Diatomic Periodic Chain: Effects of Acoustic Frequency Band-Gap
,”
Acta Mech.
,
205
, pp.
85
103
.
19.
Spadoni
,
A.
, and
Diara
,
C.
, 2009, arXiv:0909.0068.
20.
Harbola
,
U.
,
Rosas
,
A.
,
Esposito
,
M.
, and
Lindenberg
,
K.
, 2009, “
Pulse Propagation in Tapered Granular Chains: An Analytic Study
,”
Phys. Rev. E
,
80
, p.
031303
.
21.
Pilipchuk
,
V. N.
, 1985, “
The Calculation of Strongly Non-Linear Systems Close to Vibration Impact Systems
,”
PMM
,
49
(
5
), pp.
572
578
.
22.
Pilipchuk
,
V. N.
, 1988, “
Transformation of Oscillatory Systems Using a Pair of Non-Smooth Periodic Functions
,”
Dokl. Akad Nauk. UkrSSR Ser. A
,
4
, pp.
37
40
.
23.
Pilipchuk
,
V. N.
, 1996, “
Analytical Study of Vibrating Systems With Strong Non-Linearities by Employing Saw-Tooth Time Transformations
,”
J. Sound Vib.
,
192
(
1
), pp.
43
64
.
24.
Kourdis
,
P. D.
, and
Vakakis
,
A. F.
, 2006, “
Some Results on the Dynamics of the Linear Parametric Oscillator With General Time-Varying Frequency
,”
Appl. Math. Comput.
,
183
, pp.
1235
1248
.
25.
Segur
,
H.
, and
Kruskal
,
M. D.
, 1987, “
Nonexistence of Small-Amplitude Breather Solutions in φ4-Theory
,”
Phys. Rev. Lett.
,
58
, pp.
747
750
.
26.
Weinstein
,
A.
, 1985, “
Periodic Nonlinear Waves on a Half-Line
,”
Commun. Math. Phys.
,
99
, pp.
385
388
.
27.
Kosevich
,
A. M.
, and
Kovalev
,
A. S.
, 1975, “
Self-Localization of Vibrations in a One-Dimensional Anharmonic Chain
,”
Sov. Phys. JETP
,
40
, pp.
891
896
.
28.
Taniuti
,
T.
, and
Yajima
,
N.
, 1969, “
Perturbation Method for a Nonlinear Wave Modulation
,”
J. Math. Phys.
,
10
, pp.
1369
1372
.
29.
Pilipchuk
,
V. N.
, 2002, “
Non-Smooth Time Decomposition for Nonlinear Models Driven by Random Pulses
,”
Chaos, Solitons Fractals
,
14
, pp.
129
143
.
30.
Whitham
,
G. B.
, 1999,
Linear and Nonlinear Waves
,
Wiley Interscience
,
New York
.
31.
Remoissenet
,
M.
, 1999,
Waves Called Solitons (Concepts and Experiments)
,
Springer-Verlag
,
Berlin
.
32.
Porter
,
M. A.
,
Daraio
,
C.
,
Szelengowicz
,
I.
,
Herbold
,
E. B.
, and
Kevrekidis
,
P. G.
, 2009, “
Highly Nonlinear Solitary Waves in Heterogeneous Periodic Granular Media
,”
Physica D
,
238
, pp.
666
676
.
33.
Molinari
,
A.
, and
Daraio
,
C.
, 2009, “
Stationary Shocks in Elastic Highly Nonlinear Granular Chains
,”
Phys. Rev. E
,
80
, p.
056602
.
You do not currently have access to this content.