We present a computational fluid mechanics technique for modeling of wave-energy air turbines, specifically the Wells turbine. In this type of energy conversion, the wave motion is converted to an oscillating airflow in a duct with the turbine. This is a self-rectifying turbine in the sense that it maintains the same direction of rotation as the airflow changes direction. The blades of the turbine are symmetrical, and here we consider straight and swept blades, both with constant chord. The turbulent flow physics involved in the complex, unsteady flow is governed by nonequilibrium behavior, and we use a stabilized formulation to address the related challenges in the context of RANS modeling. The formulation is based on the streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin methods, supplemented with the DRDJ stabilization. Judicious determination of the stabilization parameters involved is also a part of our computational technique and is described for each component of the stabilized formulation. We compare the numerical performance of the formulation with and without the DRDJ stabilization and present the computational results obtained for the two blade configurations with realistic airflow data.

References

1.
Bazilevs
,
Y.
,
Hsu
,
M. -C. -C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
, 2011,
“3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics,”
Int. J. Numer. Methods Fluids
,
65
, pp.
207
235
.
2.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wuchner
,
R.
, and
Bletzinger
,
K.-U.
, 2011,
“3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid-Structure Interaction Modeling With Composite Blades,”
Int. J. Numer. Methods Fluids
,
65
, pp.
236
253
.
3.
Takizawa
,
K.
,
Henicke
,
B.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
, 2011,
“Stabilized Space-Time Computation of Wind-Turbine Rotor Aerodynamics,”
Comput. Mech.
,
48
, pp.
333
344
.
4.
Takizawa
,
K.
,
Henicke
,
B.
,
Montes
,
D.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
, 2011,
“Numerical-Performance Studies for the Stabilized Space–Time Computation of Wind-Turbine Rotor Aerodynamics,”
Comput. Mech. (to be published).
5.
P.H.
de Girard
, 1799, French patent no. 349.
6.
Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., Pontes, M., Schild, P., Sjöström, B., Sørensen, H., C., and Thorpe, T., 2002,
Wave Energy in Europe: Current Status and Perspectives
(
Renewable and Sustainable Energy Reviews
), pp.
405
431
.
7.
Thorpe
,
T. W.
, 1999,
“A Brief Review of Wave Energy
,” DTI Report ETSU-R-120, AEA Technology.
8.
Whittaker
,
T. J. T.
,
McIlwaine
,
S. J.
, and
Raghunathan
R.
, 1993,
“A Review of the Islay Shoreline Wave Power Plant,”
Proceedings of European Wave Energy Symposium, 21−24 July 1993, Edinburgh, Scotland.
9.
Heath
,
T.
Whittaker
,
T. J. T.
, and
Boake
,
C. B.
, 2000,
“The Design, Construction and Operation of the LIMPET Wave Energy Converter (Islay, Scotland),”
Proceedings of the Fourth European Wave Power Conference
, 4−6 December 2000, Aalborg, Denmark, paper B2.
10.
Falcão
,
A.F.
, and
De
,
O.
, 2000,
“The Shoreline OWC Wave Power Plant at the Azores,”
Proceedings of the Fourth European Wave Energy Conference, Aalborg, Denmark, Paper B1.
11.
Tease
,
W. K.
,
Lees
,
J.
, and
Hall
,
A.
, 2007,
“Advances in Oscillating Water Column Air Turbine Development,”
Proc. of the Seventh European Wave and Tidal Energy Conference, Porto, Portugal.
12.
Torre-Enciso
,
Y.
,
Ortubia
,
I.
,
Lopez de Aguileta
,
L. I.
, and
Marques
J.
, 2009,
“Mutriku Wave Power Plant: From the Thinking Out to the Reality,”
Proc. of the Eighth European Wave And Tidal Energy Conference, Uppsala, Sweden.
13.
Y.
Masuda
, 1971,
“Wave Activated Generator”
,
Proc., Intl. Colloquium on the Exposition of the Oceans
,
Bordeau, France
, March, 1971.
14.
Raghunathan
,
S.
, 1995,
“The Wells Air Turbine for Wave Energy Conversion,”
Prog. Aerospace Sci.
31
, pp.
335
386
.
15.
Jacobs
,
E. N.
,
Ward
,
K. E.
, and
Pinkerton
,
R. M.
, 1933,
“The Characteristics of 78 Related Airfoil Sections From Tests in the Variable-Density Wind Tunnel,”
NACA Report no. 460.
16.
Gato
,
L. M. C.
, and
Henriques
,
J. C. C.
, 1994,
“Air Turbine Development and Assessment for Wave Power Plants,”
Contract No. JOU2-CT93-0333, Progress Report.
17.
Gato
,
L. M. C.
, and
Henriques
,
J.C.C.
, 1996,
“Optimization of Symmetrical Profiles for Wells Turbine Rotor Blades,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
, FED-
238
(
3
), pp.
623
630
.
18.
Thakker
,
A.
, and
Abdulhadi
,
R.
, 2008,
“The Performance of Wells Turbine Under Bi-Directional Airflow,”
Renewable Energy
,
33
, pp.
2467
2474
.
19.
Kim
,
T. H.
,
Setoguchi
,
T.
,
Kaneko
,
K.
, and
Raghunathan
,
S.
, 2002,
“Numerical Investigation on the Effect of Blade Sweep on the Performance of Wells Turbine,”
Renewable Energy
25
, pp.
235
248
.
20.
Corsini
,
A.
,
Marchegiani
,
A.
,
Minotti
,
S.
, and
Rispoli
,
F.
, 2011,
“On the Use of Blade Sweep in Wells Turbines for Small Power Generation,”
Third International Conference on Applied Energy, Perugia, Italy.
21.
Tezduyar
,
T. E.
, and
Park
,
Y. J.
, 1986,
“Discontinuity Capturing Finite Element Formulations for Nonlinear Convection–Diffusion–Reaction Equations,”
Comput. Methods Appl. Mech. Eng.
,
59
, pp.
307
325
.
22.
Tezduyar
,
T. E.
,
Park
,
Y. J.
, and
Deans
,
H. A.
, 1987,
“Finite Element Procedures for Time-Dependent Convection-Diffusion-Reaction Systems,”
Int. J. Numer. Methods Fluids
,
7
, pp.
1013
1033
.
23.
Codina
,
R.
, 1998,
“Comparison of Some Finite Element Methods for Solving the Diffusion–Convection–Reaction Equation,”
Comput. Methods Appl. Mech. Eng.
,
156
, pp.
185
210
.
24.
Franca
,
L. P.
, and
Valentin
,
F.
, 2002,
“On an Improved Unusual Stabilized Finite Element Method for the Advective–Reactive–Diffusive Equation,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
1785
1800
.
25.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
, 2004,
“A New Stabilized Finite Element Method for Advection-Diffusion-Reaction Equations Using Quadratic Elements,”
Modelling Fluid Flow
, J. Vad, T. Lajos, and R. Schilling, eds.,
Springer-Verlag
,
Berlin
.
26.
Corsini
,
A.
,
Rispoli
,
F.
,
Santoriello
,
A.
, and
Tezduyar
,
T. E.
, 2006,
“Improved Discontinuity-Capturing Finite Element Techniques for Reaction Effects in Turbulence Computation,”
Comput. Mech.
38
, pp.
356
364
.
27.
Hughes
,
T. J. R.
, 1995,
“Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods,”
Comput. Methods Appl. Mech. Eng.
,
127
,
387
401
.
28.
Hauke
,
G.
, 2002,
“A Simple Subgrid Scale Stabilized Method for the Advection–Diffusion–Reaction Equation,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
2925
2947
.
29.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
, 2005,
“A Variational Multiscale High-Order Finite Element Formulation for Turbomachinery Flow Computations,”
Comput. Methods Appl. Mech. Eng.
,
194
,
4797
4823
.
30.
Gravemeier
,
V.
, and
Wall
,
W. A.
, 2007,
“A ‘Divide-and-Conquer’ Spatial and Temporal Multiscale Method for Transient Convection–Diffusion–Reaction Equations,”
Int. J. Numer. Meth. Fluids
,
54
, pp.
779
804
.
31.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982,
“Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
32.
Tezduyar
,
T. E.
, 1992,
“Stabilized Finite Element Formulations for Incompressible Flow Computations,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.
33.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
, 1992,
“Incompressible Flow Computations with Stabilized Bilinear and Linear Equal-order-interpolation Velocity-Pressure Elements,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
221
242
.
34.
Corsini
,
A.
,
Menichini
,
F.
,
Rispoli
,
F.
,
Santoriello
,
A.
, and
Tezduyar
,
T. E.
, 2009,
“A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms,”
J. Appl. Mech.
,
76
, pp.
021211
.
35.
Corsini
,
A.
,
Iossa
,
C.
,
Rispoli
,
F.
, and
Tezduyar
,
T. E.
, 2010,
“A DRD Finite Element Formulation for Computing Turbulent Reacting Flows in Gas Turbine Combustors,”
Comput. Mech.
,
46
, pp.
159
167
.
36.
Corsini
,
A.
,
Rispoli
F.
, and
Tezduyar
,
T. E.
, 2011,
“Stabilized Finite Element Computation of NOx Emission in Aero-Engine Combustors,”
Int. J. Numer. Meth. Fluids
,
65
, pp.
254
270
.
37.
Hughes
,
T. J. R.
, and
Tezduyar
,
T. E.
, 1984,
“Finite Element Methods for First-Order Hyperbolic Systems With Particular Emphasis on the Compressible Euler Equations,”
Comput. Methods Appl. Mech. Eng.
,
45
, pp.
217
284
.
38.
Le Beau
,
G. J.
,
Ray
,
S. E.
,
Aliabadi
,
S. K.
, and
Tezduyar
,
T. E.
, 1993,
“SUPG Finite Element Computation of Compressible Flows With the Entropy and Conservation Variables Formulations,”
Comput. Methods Appl. Mech. Eng.
,
104
, pp.
397
422
.
39.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
, 2000,
“Finite Element Stabilization Parameters Computed from Element Matrices and Vectors,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
411
430
.
40.
Akin
,
J. E.
,
Tezduyar
,
T.
,
Ungor
,
M.
, and
Mittal
,
S.
, 2003,
“Stabilization Parameters and Smagorinsky Turbulence Model,”
J. Appl. Mech.
,
70
, pp.
2
9
.
41.
T. E.
Tezduyar
,
T. E.
, 2003,
“Computation of Moving Boundaries and Interfaces and Stabilization Parameters,”
Int. J. Numer. Meth. Fluids
,
43
, pp.
555
575
.
42.
Akin
,
J. E.
, and
Tezduyar
,
T. E.
, 2004,
“Calculation of the Advective Limit of the SUPG Stabilization Parameter for Linear and Higher-Order Elements,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
1909
1922
.
43.
Tezduyar
,
T. E.
, and
Senga
,
M.
, 2006,
“Stabilization and Shock-Capturing Parameters in SUPG Formulation of Compressible Flows,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1621
1632
.
44.
Tezduyar
,
T. E.
, 2007,
“Finite Elements in Fluids: Stabilized Formulations and Moving Boundaries and Interfaces,”
Comput. Fluids
,
36
, pp.
191
206
.
45.
L.
Catabriga
,
L.
,
Coutinho
,
A. L. G. A.
, and
Tezduyar
,
T. E.
, 2005,
“Compressible Flow SUPG Parameters Computed from Element Matrices,”
Commun. Numer. Methods Eng.
,
21
,
465
476
.
46.
Tezduyar
,
T. E.
, and.
Senga
,
M.
, 2007,
“SUPG Finite Element Computation of Inviscid Supersonic Flows with YZβ Shock-Capturing,”
Comput. Fluids
,
36
, pp.
147
159
.
47.
Catabriga
,
L.
,
Coutinho
,
A. L. G. A.
, and
Tezduyar
,
T. E., 2006
,
“Compressible Flow SUPG Parameters Computed from Degree-of-Freedom Submatrices,”
Comput. Mech.
38
, pp.
334
343
.
48.
Tezduyar
,
T. E.
,
Senga
,
M.
, and
Vicker
,
D. 2006
,
,
“Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing,”
Comput. Mech.
,
38
, pp.
469
481
.
49.
Rispoli
,
F.
,
Corsini
,
A.
, and
Tezduyar
,
T. E.
, 2007,
“Finite Element Computation of Turbulent Flows with the Discontinuity-Capturing Directional Dissipation (DCDD),”
Comput. Fluids
,
36
, pp.
121
126
.
50.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 2007,
“YZβ Discontinuity-Capturing for Advection-Dominated Processes with Application to Arterial Drug Delivery,”
Int. J. Numer. Meth. Fluids
,
54
, pp.
593
608
.
51.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrel
,
J. A.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Scovazzi
,
G.
, 2007,
“Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows,”
Comput. Methods Appl. Mech. Eng.
197
, pp.
173
201
.
52.
Hughes
,
T. J. R.
,
Scovazzi
,
G.
, and
Tezduyar
,
T. E.
, 2010,
“Stabilized Methods for Compressible Flows,”
J. Sci. Comput.
,
43
, pp.
343
368
.
53.
Catabriga
,
L.
,
de Souza
,
D. A. F.
,
Coutinho
,
A. L. G. A.
, and
Tezduyar
,
T. E.
, 2009,
“Three-Dimensional Edge-Based SUPG Computation of Inviscid Compressible Flows with YZβ Shock-Capturing,”
J. Appl. Mech.
,
76
,
021208
.
54.
Hsu
,
M.-C.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 2010
,“Improving Stability of Stabilized and Multiscale Formulations in Flow Simulations at Small Time Steps,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
828
840
.
55.
Tezduyar
,
T. E.
, 2011,
“Comments on `Adiabatic Shock Capturing in Perfect Gas Hypersonic Flows.”
Int. J. Numer. Meth. Fluids
,
66
, pp.
935
938
.
56.
Takase
,
S.
,
Kashiyama
,
K.
,
Tanaka
,
S.
, and
Tezduyar
,
T. E.
, 2010,
“Space-Time SUPG Formulation of the Shallow-Water Equations,”
Int. J. Numer. Meth. Fluids
,
64
, pp.
1379
1394
.
57.
Takizawa
K.
, and
Tezduyar
,
T. E.
, 2011,
“Multiscale Space-Time Fluid–Structure Interaction Techniques,”
Comput. Mech.
,
48
, pp.
247
267
58.
Corsini
,
A.
, and
Rispoli
,
F.
, 2005,
“Flow Analyses in a High-Pressure Axial Ventilation Fan With a Non-Linear Eddy Viscosity Closure,”
Int. J. Heat Fluid Flow
,
17
, pp.
108
155
.
59.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
, 1996,
“Development and Application of a Cubic Eddy-Viscosity Model of Turbulence,”
Int. J. Heat Fluid Flow
,
17
, pp.
108
155
.
60.
Gato
,
L. M. C.
,
Warfield
,
V.
, and
Thakker
,
A.
, 1996,
“Performance of a high-solidity Wells Turbine for an OWC Wave Power Plant,”
J. Energy Resour. Technol.
,
118
, pp.
263
268
.
61.
Corsini
,
A.
,
Marro
,
E.
,
Rispoli
,
F.
, and
Tortora
,
E.
, 2010,
“Space-Time Mapping of Wave Energy Conversion Potential in Mediterranean Sea States,”
ASME-ATI-UIT Conference on Thermal and Enviromental Issues in Energy Systems
,
Sorrento, Italy
.
62.
Corsini
,
A.
, and
Rispoli
,
F.
, 2004,
“Using Sweep to Extend Stall-Free Operational Range in Axial Fan Rotors,”
J. Power Energy
,
218
, pp.
129
139
.
63.
Drela
,
M.
, and
Youngren
,
H.
, 2001, XFOIL 6.94 http://web.mit.edu/drela/Public/web/xfoil/.
64.
Corsini
,
A.
,
Rispoli
,
F.
, and
Tuccimei
,
E.
, 2011,
“Development of Air Turbines for Small Power OWC Plants,”
Ninth European Wave and Tidal Energy Conference (EWTEC2011), University of Southampton, UK.
65.
Zuchemann
,
D.
, 1956,
“A Simple Method for Calculating the Span and Chordwise Loading on Straight and Swept Wings of Any Given Aspect Ratio at Subsonic Speeds,”
Ministry of Supply, Aeronautical Research Council Report and Memoranda no. 2935.
You do not currently have access to this content.