In this study, an analytical method is presented for the computation of thermal weight functions in two dimensional bi-material elastic bodies containing a crack at the interface and subjected to thermal loads using body analogy method. The thermal weight functions are derived for two problems of infinite bonded dissimilar media, one with a semi-infinite crack and the other with a finite crack along the interface. The derived thermal weight functions are shown to reduce to the already known expressions of thermal weight functions available in the literature for the respective homogeneous elastic body. Using these thermal weight functions, the stress intensity factors are computed for the above interface crack problems when subjected to an instantaneous heat source.

References

1.
Sih
,
G. C.
, 1962, “
On the Singular Character of Thermal Stress Near a Crack Tip
,”
Trans. ASME, J. Appl. Mech.
,
29
, pp.
587
588
.
2.
Florence
,
A. L.
, and
Goodier
,
J. N.
, 1960, “
Thermal Stress Due to Disturbances of Uniform Heat Flow by an Insulated Ovaloid Hole
,”
Trans. ASME, J. Appl. Mech.
,
27
, pp.
635
639
.
3.
Olesiak
,
Z.
, and
Sneddon
,
I. N.
, 1959, “
The Distribution of Thermal Stress in an Infinite Elastic Solid Containing a Penny-Shaped Crack
,”
Arch. Ration. Mech. Anal.
,
4
, pp.
238
254
.
4.
Brown
,
E. J.
, and
Erdogan
,
F.
, 1968, “
Thermal Stress in Bonded Materials Containing Cuts on the Interface
,”
Int. J. of Basic Science
,
6
, pp.
517
529
.
5.
Kassir
,
M. K.
, and
Sih
,
G. C.
, 1968, “
Thermal Stress in a Solid Weakened by an External Circular Crack
,”
Int. J. Solids Struct.
,
5
, pp.
351
367
.
6.
Kassir
,
M. K.
, and
Sih
,
G. C.
, 1971, “
Thermal Stress in a Solid Containing Parallel Circular Crack
,”
Appl. Sci. Res.
,
25
, pp.
262
280
.
7.
Lee
,
K. Y.
, and
Shul
,
C. W.
, 1991 “
Determination of Stress Intensity Factors for an Interface Crack Under Vertical Uniform Heat Flow
,”
Eng. Fract. Mech.
,
40
(
6
), pp.
1067
1074
.
8.
O’Hara
,
P.
,
Duarte
,
C.
, and
Eason
,
T.
, 2009, “
Generalized Finite Element Analysis of Three-Dimensional Heat Transfer Problems Exhibiting Sharp Thermal Gradients
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
1857
1871
.
9.
Wilson
,
W. K.
, and
Yu
,
I. W.
, 1979, “
The Use of the J Integral in Thermal Stress Crack Problem
,”
Int. J. Fract.
,
15
, pp.
377
387
.
10.
Hellen
,
T. K.
, and
Cesari
,
F.
, 1979, “
On the Solution of Center Cracked Plate with a Quadratic Thermal Gradient
,”
Eng. Fract. Mech.
12
, pp.
469
478
.
11.
Emmel
,
E.
, and
Stamm
,
H.
, 1985, “
Calculation of Stress Intensity Factors of Thermal Loaded Cracks Using the Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
19
, pp.
1
17
.
12.
Kim
,
D.
,
Duarte
,
C.
, and
Sobh
,
N.
, 2011,
“Parallel Simulations of Three-Dimensional Cracks Using the Generalized Finite Element Method
,”
Comput. Mech.
,
47
, pp.
265
282
.
13.
Wilson
,
R. I.
, and
Meguid
,
S. A.
, 1995, “
On the Determination of Mixed mode Stress Intensity Factors of an Angled Cracks in a Disc Using FEM
,”
Finite Elem. Anal. Design
,
18
, pp.
433
438
.
14.
Yuuki
,
R.
, and
Cho
,
S. B.
, 1989, “
Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials
,”
Eng. Fract. Mech.
,
34
, pp.
179
188
.
15.
Sun
,
C. T.
, and
Jih
,
C. J.
, 1987, “
On Strain Energy Release Rates for Interfacial Cracks in Bi-Material Media
,”
Eng. Fract. Mech.
,
28
, pp.
13
20
.
16.
Sun
,
C. T.
, and
Quin
,
W.
, 1997, “
The Use of Finite Extension Strain Energy Release Rates in Fracture of Interfacial Cracks
,”
Int. J. Solids Struct.
,
34
, pp.
2595
2609
.
17.
Sun
,
C. T.
, and
Ikeda
,
T.
, 2001, “
Stress Intensity Factor Analysis for an Interface Crack Between Dissimilar Isotropic Materials Under Thermal Stress
,”
Int. J. Fract.
,
111
, pp.
229
249
.
18.
Banks-Sills
,
L.
, and
Dolev
,
O.
, 2004, “
The Conservative M Integral for Thermal-Elastic Problems
,”
Int. J. Fract.
,
125
, pp.
149
170
.
19.
Bueckner
,
H. F.
, 1970, “
A Novel Principle for the Computation of Stress Intensity Factor
,”
ZAMM
,
50
, pp.
529
546
.
20.
Rice
,
J. R.
, 1972, “
Some Remarks on Elastic Crack-Tip Stress Fields
,”
Int. J. Solid Struct.
,
8
, pp.
751
758
.
21.
Bueckner
,
H. F.
, 1973. “
Field Singularities and Related Integral Representation
,”
Mech. Fract.
,
1
, pp.
239
314
.
22.
Paris
,
P. C.
, and
McMeeking
,
R. M.
, 1975, “
Efficient Finite Element Methods for Stress Intensity Factors Using Weight Functions
,”
Int. J. Fract.
,
11
, pp.
354
358
.
23.
Vanderglas
,
M. L.
, 1978, “
A Stiffness Derivative Finite element Technique for Determination of Influence Functions
,”
Int. J. Fract.
,
14
, pp.
R291
294
.
24.
Parks
,
D. M.
, and
Kamenetzky
,
E. M.
, 1979, “
Weight Functions From Virtual Crack Extension
,”
Int. J. Numer. Methods Eng.
,
14
, pp.
1693
1705
.
25.
Bortman
,
Y.
, and
Banks-Sills
,
L.
, 1983, “
An Extended Weight Function Method for Mixed-Mode Elastic Crack Analysis
,”
Trans. ASME, J. Appl. Mech.
,
50
, pp.
907
909
.
26.
Rice
,
J. R.
, 1985, “
First-Order Variation in Elastic Fields Due to Variation in Location of a Planar Crack Front
,”
Trans. ASME, J. Appl. Mech.
,
52
, pp.
571
579
.
27.
Rice
,
J. R.
, 1988, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
Trans. ASME, J. Appl. Mech.
,
55
, pp.
98
105
.
28.
Sham
,
T. L.
, 1987, “
A Unified Finite Element Method for Determining Weight Functions in Two and Three Dimensions
,”
Int. J. Solids Struct.
,
23
, pp.
1357
1372
.
29.
Bueckner
,
H. F.
, 1987, “
Weight Functions and Fundamental Fields for the Penny-Shaped and the Half-Plane Crack in Three-Space
,”
Int. J. Solids Struct.
,
23
, p.
5793
.
30.
Sham
,
T. L.
, and
Zhou
,
Y.
, 1989, “
Weight Functions in Two-Dimensional Bodies with Arbitrary Anisotropy
,”
Int. J. Fract.
,
40
, pp.
13
41
.
31.
Wu
,
X. R.
, and
Carlsson
,
J.
, 1991,
Weight Functions and Stress Intensity Factor Solutions
Pergamon
,
Oxford
.
32.
Heaton
,
M. D.
, 1976,
“On the Calculation of Stress Intensity Factors Due to Thermal and Residual Stress Fields,”
CEGB Research Report NW/SSD/RR/158.
33.
Tsai
,
C. H.
, and
Ma
,
C. C.
, 1992, “
Thermal Weight Function of Cracked Bodies Subjected to Thermal Loading
,”
Eng. Fract. Mech.
,
41
(
1
), pp.
27
40
.
34.
Lu
,
Y. L.
,
Huang
,
X. P.
,
Lu
,
C. D.
, and
Weng
,
X. H.
, 2004, “
A Novel Technique for Determination of Histories of SIFs Distributions Along 3D Crack Fronts of a Body Subjected to Thermal Shock
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
1317
1337
.
35.
Lu
,
Y. L.
,
Liu
,
H.
Jia
,
H.
, and
Yu
,
Z. Q.
, 2001, “
Finite Element Implementation of Thermal Weight Function Method for Calculating Transient Stress Intensity Factors of a Body Subjected to Thermal Shock
,”
Int. J. Fract.
,
108
, pp.
95
117
.
36.
Salencon
,
J.
, 2001, “
Thermo-Elastic Processes and Equilibrium
,”
Handbook of Continuum Mechanics: General Concepts, Thermo-elasticity
,
Springer-Verlag
Berlin and Heidelberg GmbH & Co.
, pp.
363
383
.
37.
Hong
,
C. C.
, and
Stern
,
M.
, 1978, “
The Computation of Stress Intensity Factors in Dissimilar Materials
,”
J. Elast.
,
8
(
4
), pp.
21
36
.
38.
Stern
,
M.
, 1979, “
The Numerical Calculation of Thermally Induced Stress Intensity Factor
,”
J. Elast.
,
9
, pp.
91
95
.
39.
Banks-Sills
,
L.
, 1993, “
Weight Functions for Interface Cracks
,”
Int. J. Fract.
60
, pp.
89
95
.
40.
Banks-Sills
,
L.
,
Ashkenazi
,
D.
, and
Eliasi
,
R.
, 1997, “
Determination of the Effect of Residual Curing Stresses on an Interface Crack by Means of the Weight Function Method
,”
Comput. Mech.
,
19
(
6
), pp.
507
510
.
41.
Nowacki
,
W.
, 1962,
Thermoelasticity
,
Pergamon
,
New York
.
42.
Rice
,
J.
, and
Sih
,
G.
, 1965, “
Plane Problems of Cracks in Dissimilar Media
,”
Trans. ASME, J. Appl. Mech.
, pp.
418
423
.
43.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1962,
Theory of Thermal Stresses
,
Wiley
,
New York
.
44.
Muskhelishvili
,
N.
, 1965,
Some Basic Problems of Mathematical Theory of Elasticity
,
Noordhoff, Groningen
,
The Netherlands
.
45.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.
Oxford University Press
,
New York
.
You do not currently have access to this content.