Elastic-plastic indentation of a single-crystal half-space by a rigid cylinder was analyzed by discrete dislocation plasticity. Short-range dislocation interactions were modeled by a set of constitutive rules of dislocation emission, glide, pinning (by obstacles), and annihilation. The occurrence of the first dislocation dipole, multiplication of dislocations, and evolution of subsurface stress field were examined in terms of contact load, dislocation source density, slip-plane distance and orientation angle, and indenter radius. In the presence of defects (dislocation sources), the critical load for dislocation initiation is less than that of a defect-free medium and depends on dislocation source density, slip-plane distance, and indenter radius. The critical indenter radius resulting in deformation under the theoretical material strength is determined from numerical results, and the role of dislocation obstacles is interpreted in terms of their spatial density. Simulations provide insight into yielding and plastic deformation of indented single-crystal materials, and establish a basis for developing coarse-grained plasticity models of localized contact deformation in polycrystalline solids.

1.
Kuhlmann-Wilsdorf
,
D.
, 1981, “
Dislocation Concepts in Friction and Wear
,”
Fundamentals of Friction and Wear of Materials
,
D. A.
Rigney
, ed.,
American Society for Metals
,
Metals Park, OH
, pp. 119–186.
2.
Pollock
,
H. M.
, 1992, “
Surface Forces and Adhesion
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
(NATO ASI Series E: Applied Sciences, Vol. 220),
I. L.
Singer
and
H. M.
Pollock
, eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp. 77–94.
3.
Ma
,
Q.
, and
Clarke
,
D. R.
, 1995, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
JMREEE 0884-2914,
10
, pp. 853–863.
4.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
, 2002, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
50
, pp. 681–694.
5.
Gouldstone
,
A.
,
Chollacoop
,
N.
,
Dao
,
M.
,
Li
,
J.
,
Minor
,
A. M.
, and
Shen
,
Y. -L.
, 2007, “
Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling
,”
Acta Mater.
ACMAFD 1359-6454,
55
, pp. 4015–4039.
6.
Acharya
,
A.
, and
Bassani
,
J. L.
, 2000, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
48
, pp. 1565–1595.
7.
Gurtin
,
M. E.
, 2002, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
50
, pp. 5–32.
8.
Shu
,
J. Y.
, and
Fleck
,
N. A.
, 1999, “
Strain Gradient Crystal Plasticity: Size-Dependent Deformation of Bicrystals
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
47
, pp. 297–324.
9.
Van der Giessen
,
E.
, and
Needleman
,
A.
, 1995, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
MSMEEU 0965-0393,
3
, pp. 689–735.
10.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1996, “
Simulation of Microscopic Elastic-Plastic Contacts by Using Discrete Dislocations
,”
Proc. R. Soc. London, Ser. A
PRLAAZ 0950-1207,
452
, pp. 2173–2194.
11.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1996, “
Scale Effects of Elastic-Plastic Behavior of Microscopic Asperity Contacts
,”
ASME J. Tribol.
JOTRE9 0742-4787,
118
, pp. 335–340.
12.
Kreuzer
,
H. G. M.
, and
Pippan
,
R.
, 2004, “
Discrete Dislocation Simulation of Nanoindentation: The Effect of Moving Conditions and Indenter Shape
,”
Mater. Sci. Eng. A
MSAPE3 0921-5093,
387–389
, pp. 254–256.
13.
Widjaja
,
A.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
, 2005, “
Discrete Dislocation Modelling of Submicron Indentation
,”
Mater. Sci. Eng. A
MSAPE3 0921-5093,
400–401
, pp. 456–459.
14.
Balint
,
D. S.
,
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2006, “
Discrete Dislocation Plasticity Analysis of the Wedge Indentation of Films
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
54
, pp. 2281–2303.
15.
Widjaja
,
A.
,
Van der Giessen
,
E.
,
Deshpande
,
V. S.
, and
Needleman
,
A.
, 2007, “
Contact Area and Size Effects in Discrete Dislocation Modeling of Wedge Indentation
,”
J. Mater. Res.
JMREEE 0884-2914,
22
, pp. 655–663.
16.
Widjaja
,
A.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2007, “
The Effect of Indenter Shape on Sub-Micron Indentation According to Discrete Dislocation Plasticity
,”
Modell. Simul. Mater. Sci. Eng.
MSMEEU 0965-0393,
15
, pp. S121–S131.
17.
Kreuzer
,
H. G. M.
, and
Pippan
,
R.
, 2004, “
Discrete Dislocation Simulation of Nanoindentation
,”
Comput. Mech.
CMMEEE 0178-7675,
33
, pp. 292–298.
18.
Kreuzer
,
H. G. M.
, and
Pippan
,
R.
, 2007, “
Discrete Dislocation Simulation of Nanoindentation: Indentation Size Effect and the Influence of Slip Band Orientation
,”
Acta Mater.
ACMAFD 1359-6454,
55
, pp. 3229–3235.
19.
Kreuzer
,
H. G. M.
, and
Pippan
,
R.
, 2005, “
Discrete Dislocation Simulation of Nanoindentation: The Influence of Obstacles and a Limited Number of Dislocation Sources
,”
Philos. Mag.
PMHABF 1478-6435,
85
, pp. 3301–3319.
20.
Kovács
,
I.
, and
Zsoldos
,
L.
, 1973,
Dislocations and Plastic Deformation
,
Pergamon
,
Oxford, UK
, pp. 4–5 and 117.
21.
Nicola
,
L.
,
Bower
,
A. F.
,
Kim
,
K. -S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2007, “
Surface Versus Bulk Nucleation of Dislocations During Contact
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
55
, pp. 1120–1144.
22.
Lemaitre
,
J.
, and
Dufailly
,
J.
, 1987, “
Damage Measurements
,”
Eng. Fract. Mech.
EFMEAH 0013-7944,
28
, pp. 643–661.
23.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp. 101–104 and 154.
24.
Rigney
,
D. A.
, 1988, “
Sliding Wear of Metals
,”
Annu. Rev. Mater. Sci.
ARMSCX 0084-6600,
18
, pp. 141–163.
25.
Jassby
,
K. M.
, and
Vreeland
,
T.
, Jr.
, 1970, “
An Experimental Study of the Mobility of Edge Dislocations in Pure Copper Single Crystals
,”
Philos. Mag.
PMHABF 1478-6435,
21
, pp. 1147–1168.
26.
Ross
,
R. B.
, 1992,
Metallic Materials Specification Handbook
,
Chapman and Hall
,
London
, p. 235.
You do not currently have access to this content.