An approach for structural response reconstruction in a substructure using the unit impulse response function in the wavelet domain is presented. The forces at the interface degrees-of-freedom are taken as input excitations on the substructure. The response reconstruction is conducted by transforming the measured responses into responses at other selected locations. The response reconstruction using the proposed wavelet domain method is then compared with that from an existing frequency domain method. Numerical studies on a seven-story plane frame structure are carried out to investigate the accuracy and effectiveness of the proposed method, and the effects of influencing parameters such as the number of sampled data, sampling rate, sensor numbers, and measurement noise are studied.

1.
Kim
,
H. M.
, and
Bartkowicz
,
T. J.
, 1993, “
Damage Detection and Health Monitoring of Large Space Structures
,”
Sound Vib.
SOVIAJ 0038-1810,
27
(
6
), pp. 12–17.
2.
Cheng
,
L.
,
Xie
,
H. C.
,
Spence
,
B. F.
, and
Giles
,
R. K.
, 2009, “
Optimized Finite Element Model Updating Method for Damage Detection Using Limited Sensor Information
,”
Smart Structures and Systems
,
5
(
6
), pp. 681–697.
3.
Udwadia
,
F. E.
,
Sharma
,
D. K.
, and
Shah
,
P. C.
, 1978, “
Uniqueness of Damping and Stiffness Distributions in the Identification of Soil and Structural Systems
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
45
, pp. 181–187.
4.
Franco
,
G.
,
Betti
,
R.
, and
Longman
,
R. W.
, 2006, “
On the Uniqueness of Solutions for the Identification of Linear Structural Systems
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
73
(
1
), pp. 153–162.
5.
Kammer
,
D. C.
, 1997, “
Estimation of Structural Response Using Remote Sensor Locations
,”
J. Guid. Control Dyn.
JGCDDT 0731-5090,
20
(
3
), pp. 501–508.
6.
Mace
,
B. R.
, and
Halkyard
,
C. R.
, 2000, “
Time Domain Estimation of Response and Intensity in Beams Using Wave Decomposition and Reconstruction
,”
J. Sound Vib.
JSVIAG 0022-460X,
230
(
3
), pp. 561–589.
7.
Ma
,
X.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2001, “
Karhunen-Loève Modes of a Truss: Transient Response Reconstruction and Experimental Verification
,”
AIAA J.
AIAJAH 0001-1452,
39
(
4
), pp. 687–696.
8.
Limongelli
,
M. P.
, 2003, “
Optimal Location of Sensors for Reconstruction of Seismic Responses Through Spline Function Interpolation
,”
Earthquake Eng. Struct. Dyn.
IJEEBG 0098-8847,
32
(
7
), pp. 1055–1074.
9.
Koh
,
C. G.
, and
Shankar
,
K.
, 2003, “
Substructural Identification Method Without Interface Measurement
,”
J. Eng. Mech.
JENMDT 0733-9399,
129
(
7
), pp. 769–776.
10.
Law
,
S. S.
,
Zhang
,
K.
, and
Duan
,
Z. D.
, 2008, “
Substructural Analysis for the Condition Assessment of a Structure
,”
Proceedings of the International Workshop on Post-Earthquake Reconstruction and Safe Buildings (PERSB)
, Chengdu, Sichuan, China.
11.
Huang
,
H. W.
, and
Yang
,
J. N.
, 2008, “
Damage Identification of Substructure for Local Health Monitoring
,”
Smart Structures and Systems
,
4
(
6
), pp. 795–807.
12.
Sandesh
,
S.
, and
Shankar
,
K.
, 2009, “
Time Domain Identification of Structural Parameters and Input Time History Using a Substructural Approach
,”
Int. J. Struct. Stab. Dyn.
ZZZZZZ 0219-4554,
9
(
2
), pp. 243–265.
13.
Law
,
S. S.
,
Li
,
J.
, and
Ding
,
Y.
, 2011, “
Structural Response Reconstruction With Transmissibility Concept in Frequency Domain
,”
Mech. Syst. Signal Process.
MSSPEP 0888-3270,
25
(
3
), pp. 952–968.
14.
Newmark
,
N. W.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
JMCEA3 0044-7951,
85
(
3
), pp. 67–94.
15.
Ribeiro
,
A. M. R.
,
Silva
,
J. M. M.
, and
Maia
,
N. M. M.
, 2000, “
On the Generalisation of the Transmissibility Concept
,”
Mech. Syst. Signal Process.
MSSPEP 0888-3270,
14
(
1
), pp. 29–35.
16.
Penrose
,
R.
, 1955, “
A Generalized Inverse for Matrices
,”
Proc. Cambridge Philos. Soc.
PCPSA4 0068-6735,
51
, pp. 406–413.
17.
Newland
,
D. E.
, 1993,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
, 3rd ed.,
Longman Group Limited
,
UK
.
18.
Juang
,
J. -N.
, and
Pappa
,
R. S.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
JGCDDT 0731-5090,
8
(
5
), pp. 620–627.
19.
Robertson
,
A. N.
,
Park
,
K. C.
, and
Alvin
,
K. F.
, 1998, “
Extraction of Impulse Response Data via Wavelet Transform for Structural System Identification
,”
ASME J. Vibr. Acoust.
JVACEK 0739-3717,
120
, pp. 252–260.
20.
Law
,
S. S.
, and
Li
,
X. Y.
, 2007, “
Wavelet-Based Sensitivity Analysis of the Impulse Response Function for Damage Detection
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
74
, pp. 375–377.
21.
Li
,
X. Y.
, and
Law
,
S. S.
, 2008, “
Structural Damage Detection With Statistical Analysis From Support Excitation
,”
Mech. Syst. Signal Process.
MSSPEP 0888-3270,
22
, pp. 1793–1808.
22.
Daubechies
,
I.
, 1992,
Ten Lectures on Wavelets
,
SIAM
,
Philadelphia, PA
.
23.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
, 1998,
Digital Control of Dynamic Systems
, 3rd ed.,
Addison-Wesley
,
Reading, MA
.
24.
Ding
,
Y.
, and
Law
,
S. S.
, “
Dynamic Load Assessment With Information of a Substructure Only
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936, unpublished.
25.
Darby
,
A. P.
,
Blakeborough
,
A.
, and
Williams
,
M. S.
, 2001, “
Improved Control Algorithm for Real-time Substructure Testing
,”
Earthquake Eng. Struct. Dyn.
IJEEBG 0098-8847,
30
, pp. 431–448.
26.
Chopra
,
A. K.
, 2007,
Dynamics of Structures: Theory and Applications to Earthquake Engineering
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Law
,
S. S.
,
Zhang
,
K.
, and
Duan
,
Z. D.
, 2010, “
Structural Damage Detection From Coupling Forces Between Substructures Under Support Excitation
,”
Eng. Struct.
ENSTDF 0141-0296,
32
(
8
), pp. 2221–2228.
28.
Taha
,
M. M. R.
,
Noureldin
,
A.
,
Lucero
,
J. L.
, and
Baca
,
T. J.
, 2006, “
Wavelet Transform for Structural Health Monitoring: A Compendium of Uses and Features
,”
Struct. Health Monit.
ZZZZZZ 1475-9217,
5
(
3
), pp. 267–295.
You do not currently have access to this content.