A thermal energy harvester using piezo-shape memory alloy (SMA) composite was designed. The main mechanism of such a piezo-SMA composite is the synergistic effect of piezoelectrics and SMA, which are connected in series and subjected to fluctuating temperature. Strain induced in the SMA phase immediately causes stress in the piezoelectric phase, thus, inducing charge by the direct piezoelectric effect. In order to make this problem more analytically tractable, two models were developed: simple laminated model and 3D model with Eshelby theory. The models predict the available power according to material properties and thermal fluctuation. The impedance of the system was examined with different thermal fluctuating frequencies. Experimental and predicted results are in agreement for higher frequencies, while for lower frequencies of thermal fluctuation, the prediction is not accurate due to internal loss.

1.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2005, “
Generation and Storage of Electricity From Power Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
67
75
.
2.
Kymissis
,
J.
,
Kendall
,
C.
,
Paradiso
,
J. J.
, and
Gershenfeld
,
N.
, 1998, “
Parasitic Power Harvesting in Shoes
,”
Proceedings of the Second IEEE International Conference on Wearable Computing
, Los Alamitos, CA, pp.
132
139
.
3.
Shenck
,
N. S.
, and
Paradiso
,
J.
, 2001, “
Energy Scavenging With Shoe-Mounted Piezoelectrics
,”
IEEE MICRO
0272-1732,
21
(
3
), pp.
30
42
.
4.
Glynne-Jones
,
P.
,
Beeby
,
S. P.
, and
White
,
N. M.
, 2001, “
Towards a Piezoelectric Vibration-Powered Microgenerator
,”
IEE Proc.: Sci., Meas. Technol.
1350-2344,
148
(
2
), pp.
68
72
.
5.
Roundy
,
S.
, 2002, “
The Power of Good Vibrations
,” Lab Notes-Research From the College of Engineering, University of California, Berkeley, Vol.
2
, No. 1.
6.
Hagood
,
N. W.
,
Roberts
,
D. C.
,
Saggere
,
L.
,
Schmidt
,
M. A.
,
Spearing
,
M.
,
Breuer
,
K. S.
,
Micak
,
R.
,
Carretero
,
J. A.
,
Ganji
,
F.
,
Li
,
H.
,
Chen
,
K.-S.
,
Su
,
Y.-H.
, and
Pulitzer
,
S.
, 1999, “
Development of Micro-Hydraulic Transducer Technology
,”
Proceedings of the Tenth International Conference on Adaptive Structures and Technologies
, Paris, France, pp.
71
81
.
7.
Engel
,
T. G.
,
Keawboonchuay
,
C.
, and
Nunnally
,
W. C.
, 2000, “
Energy Conversion and High Power Pulse Production Using Miniature Piezoelectric Compressors
,”
IEEE Trans. Plasma Sci.
0093-3813,
28
(
5
), pp.
1338
1341
.
8.
Hugo Schmidt
,
V.
, 1992, “
Piezoelectric Energy Conversion in Windmills
,”
Proceedings of the Ultrasonics Symposium
, pp.
897
904
.
9.
Taylor
,
G. W.
,
Burns
,
J. R.
,
Kammann
,
S. M.
,
Powers
,
W. B.
, and
Welsh
,
T. R.
, 2001, “
The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator
,”
IEEE J. Ocean. Eng.
0364-9059,
26
(
4
), pp.
539
547
.
10.
Tanaka
,
K.
, and
Nagaki
,
S.
, 1982, “
A Thermomechanical Description of Materials With Internal Variables in the Process of Phase Transformation
,”
Ing.-Arch.
0020-1154,
51
, pp.
287
299
.
11.
Liang
,
C.
, and
Rogers
,
C. A.
, 1990, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
, pp.
207
234
.
12.
Brinson
,
L. C.
, 1993, “
One Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
4
(
2
), pp.
229
242
.
13.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
, 1996, “
A Thermodynamical Constitutive Model for Shape Memory Materials—Part I: The Monolithic Shape Memory Alloy
,”
Int. J. Plast.
0749-6419,
12
, pp.
805
842
.
14.
Chang
,
L. C.
, and
Read
,
T. A.
, 1951,
Transactions of the American Institute of Mechanical Engineers
,
189
, p. 47.
15.
Birman
,
V.
, 1997, “
Review of Mechanics of Shape Memory Alloy Structures
,”
Appl. Mech. Rev.
0003-6900,
50
(
11
), pp.
629
645
.
16.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
17.
Taya
,
M.
,
Furuya
,
Y.
,
Yamada
,
Y.
,
Watanabe
,
R.
,
Shibata
,
S.
, and
Mori
,
T.
, 1993, “
Strengthening Mechanisms of TiNi Shape Memory Fiber/Al Matrix Composite
,”
Proc. SPIE
0277-786X,
1916
, pp.
373
383
.
18.
Namli
,
O. C.
,
Lee
,
J. K.
, and
Taya
,
M.
, 2007, “
Modeling of Piezo-SMA Composites for Thermal Energy Harvester
,”
Proc. SPIE
0277-786X,
6526
, p.
65261L
.
19.
Tanaka
,
K.
, 1986, “
Thermomechanical Sketch of Shape Memory Effect: One-Dimensional Tensile Behavior
,”
Res. Mech.
0143-0084,
18
, pp.
251
263
.
20.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusion
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
21.
Dunn
,
M. L.
, and
Taya
,
M.
, 1993, “
An Analysis of Piezoelectric Composite Materials Containing Ellipsoidal Inhomogeneities
,”
Proc. R. Soc. London, Ser. A
0950-1207,
443
, pp.
265
287
.
22.
Taya
,
M.
, 2005,
Electronic Composites
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
23.
Mikata
,
Y.
, 2000, “
Determination of Piezoelectric Eshelby Tensor in Transversely Isotropic Piezoelectric Solids
,”
Int. J. Eng. Sci.
0020-7225,
38
, pp.
605
641
.
24.
Mikata
,
Y.
, 2001, “
Explicit Determination of Piezoelectric Eshelby Tensors for a Spheroidal Inclusion
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7045
7063
.
25.
Miyazaki
,
S.
, and
Otsuka
,
K.
, 1984, “
Mechanical Behavior Associated With the Premartensitic Rhombohedral-Phase Transition in a Ti50Ni47Fe3 Alloy
,”
Philos. Mag. A
0141-8610,
50
, pp.
393
408
.
26.
Miyazaki
,
S.
, and
Otsuka
,
K.
, 1986, “
Deformation and Transition Behavior Associated With the R-Phase in Ti-Ni Alloys
,”
Metall. Trans. A
0360-2133,
17
, pp.
53
63
.
27.
Otsuka
,
K.
, 1990,
Introduction to the R-Phase Transformation Engineering Aspects of Shape Memory Alloys
,
T. W.
Duerig
,
K. N.
Melton
,
D.
Stokel
,
C. M.
Wayman
, eds.,
Butterworth-Heinemann
,
London
, pp.
36
45
.
You do not currently have access to this content.