The axisymmetric problem of a concentric set of energetically consistent annular and penny-shaped cracks in an infinite piezoelectric body subjected to uniform far-field electromechanical loading is addressed. With the aid of a robust innovated technique, the pertinent four-part mixed boundary value problem (MBVP) is reduced to a decoupled Fredholm integral equation of the second kind. The results of two limiting cases of a single penny-shaped crack and a single annular crack are recovered. The contour plots of dimensionless intensity factors (IFs) at each crack front provide the stress and electric displacement intensity factors (SIFs and EDIFs, respectively) for all combination of crack sizes. The impermeable, permeable, and semipermeable models are also examined as limiting cases.

1.
Smetanin
,
B. I.
, 1968, “
Problem of Extension of an Elastic Space Containing a Plane Annular Slit
,”
Prikl. Mat. Mekh.
0032-8235,
32
, pp.
461
466
.
2.
Moss
,
L. W.
, and
Kobayashi
,
A. S.
, 1971, “
Approximate Analysis of Axisymmetric Problems in Fracture Mechanics With Application to a Flat Toroidal Crack
,”
Int. J. Fract. Mech.
0020-7268,
7
, pp.
89
99
.
3.
Shibuya
,
T.
,
Nakahara
,
I.
, and
Koizumi
,
T.
, 1975, “
Axisymmetric Distribution of Stresses in an Infinite Elastic Solid Containing a Flat Annular Crack Under Internal Pressure
,”
J. Appl Math. Mech.
0021-8928,
55
, pp.
395
402
.
4.
Choi
,
I.
, and
Shield
,
R. T.
, 1982, “
A Note on a Flat Toroidal Crack in an Elastic Isotropic Body
,”
Int. J. Solids Struct.
0020-7683,
18
, pp.
479
486
.
5.
Selvadurai
,
A. P. S.
, and
Singh
,
B. M.
, 1985, “
The Annular Crack Problem for an Isotropic Elastic Solid
,”
Q. J. Mech. Appl. Math.
0033-5614,
38
, pp.
233
243
.
6.
Saxena
,
H. S.
, and
Dhaliwal
,
R. S.
, 1993, “
Annular Crack Surrounding an Elastic Fibre in Transversely Isotropic Elasticity
,”
Eng. Fract. Mech.
0013-7944,
44
, pp.
963
969
.
7.
Shindo
,
Y.
,
Lin
,
S.
, and
Narita
,
F.
, 2007, “
Electroelastic Response of a flat Annular Crack in a Piezoelectric Fiber Surrounded by an Elastic Medium
,”
J. Eng. Math.
0022-0833,
59
, pp.
83
97
.
8.
Eskandari
,
M.
,
Moeini-Ardakani
,
S. S.
, and
Shodja
,
H. M.
, 2010, “
An Energetically Consistent Annular Crack in a Piezoelectric Medium
,”
Eng. Fract. Mech.
0013-7944,
77
, pp.
819
831
.
9.
Tamate
,
O.
, 1968, “
The Effect of a Circular Inclusion on the Stresses Around a Line Crack in a Sheet Under Tension
,”
Eng. Fract. Mech.
0013-7944,
4
, pp.
257
266
.
10.
Erdogan
,
O.
,
Gupta
,
G. D.
, and
Ratwani
,
M.
, 1974, “
Interaction Between a Circular Inclusion and an Arbitrarily Oriented Crack
,”
ASME J. Appl. Mech.
0021-8936,
41
, pp.
1007
1013
.
11.
Lee
,
R. Y.
,
Lee
,
W. G.
, and
Pak
,
Y. E.
, 2000, “
Interaction Between a Semi-Infinite Crack and a Screw Dislocation in a Piezoelectric Material
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
165
170
.
12.
Kachanov
,
M.
, and
Laures
,
J. P.
, 1989, “
Three-Dimensional Problems of Strongly Interacting Arbitrarily Located Penny-Shaped Cracks
,”
Int. J. Fract.
0376-9429,
41
, pp.
289
313
.
13.
Lee
,
H. K.
, and
Ju
,
J. W.
, 2007, “
A Three-Dimensional Stress Analysis of a Penny-Shaped Crack Interacting With a Spherical Inclusion
,”
Int. J. Damage Mech.
1056-7895,
16
, pp.
331
359
.
14.
Shodja
,
H. M.
,
Rad
,
I. Z.
, and
Soheilifard
,
R.
, 2003, “
Interacting Cracks and Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
945
960
.
15.
Zhan
,
S.
, and
Wang
,
T.
, 2006, “
Interactions of Penny-Shaped Cracks in Three-Dimensional Solids
,”
Acta Mech. Sin.
0459-1879,
22
, pp.
341
353
.
16.
Ojaghnezhad
,
F.
, and
Shodja
,
H. M.
, 2009, “
A Lamellar Inhomogeneity Near a Multiphase Reinforcement
,”
Acta Mech.
0001-5970,
206
, pp.
39
52
.
17.
Hao
,
T. H.
, and
Shen
,
Z. Y.
, 1994, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Application
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
793
802
.
18.
McMeeking
,
R. M.
, 2004, “
The Energy Release Rate for a Griffith Crack in a Piezoelectric Material
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1169
1183
.
19.
Landis
,
C. M.
, 2004, “
Energetically Consistent Boundary Conditions for Electromechanical Fracture
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6291
6315
.
20.
Motola
,
Y.
, and
Banks-Sills
,
L.
, 2009, “
M-Integral for Calculating Intensity Factors of Cracked Piezoelectric Materials Using the Exact Boundary Conditions
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
011004
.
21.
Zhang
,
T. Y.
,
Zhao
,
M. H.
, and
Gao
,
C. F.
, 2005, “
The Strip Dielectric Breakdown Model
,”
Int. J. Fract.
0376-9429,
132
, pp.
311
327
.
22.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
23.
Ding
,
H. J.
,
Chen
,
B.
, and
Liang
,
J.
, 1996, “
General Solutions for Coupled Equations for Piezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2283
2298
.
24.
Cooke
,
J. C.
, 1963, “
Triple Integral Equations
,”
Q. J. Mech. Appl. Math.
0033-5614,
16
, pp.
193
203
.
25.
Zhang
,
T. Y.
, and
Gao
,
C. F.
, 2004, “
Fracture of Piezoelectric Materials
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
339
379
.
26.
Baker
,
C. T. H.
, 1977,
The Numerical Treatment of Integral Equations
,
Clarendon
,
Oxford
.
27.
Delves
,
L. M.
, and
Mohamed
,
J. L.
, 1985,
Computational Methods for Integral Equations
,
University Press
,
Cambridge
.
28.
Atkinson
,
K.
, 1997,
The Numerical Solution of Integral Equations of the Second Kind
,
University Press
,
Cambridge
.
29.
Noble
,
B.
, 1958, “
Certain Dual Integral Equations
,”
J. Math. Phys.
0022-2488,
37
, pp.
128
136
.
You do not currently have access to this content.