When the radius of a hole reduces to nanometers, the influence of surface energy becomes prominent in its mechanical behavior. In the present paper, we consider the diffraction of plane compressional waves by an array of nanosized circular holes in an elastic medium. The effect of surface energy is taken into account through surface elasticity theory. Using the wave expansion method, we derive the corresponding elastic diffraction fields. Dynamic stress concentrations around the holes and the scattering cross section are calculated to address the surface effects on the diffraction phenomena.

1.
Pao
,
Y. H.
, and
Mow
,
C. C.
, 1973,
Diffractions of Elastic Waves and Dynamic Stress Concentrations
,
Crane, Russak
,
New York
, Chap. 3.
2.
Jain
,
D. L.
, and
Kanwal
,
R. P.
, 1979, “
Scattering of Elastic Waves by Circular Flaws and Inclusions
,”
J. Appl. Phys.
0021-8979,
50
, pp.
4067
4109
.
3.
Terrón
,
J. M.
,
Sánchez-Lavega
,
A.
, and
Salazar
,
A.
, 2000, “
Multiple Scattering Effects of Thermal Waves by Two Subsurface Cylinders
,”
J. Appl. Phys.
0021-8979,
87
, pp.
2600
2607
.
4.
Fang
,
X. Q.
,
Hu
,
C. W.
, and
Huang
,
H.
, 2007, “
Scattering of Elastic Waves and Dynamic Stress in Two-Particle Reinforced Composite System
,”
Mech. Mater.
0167-6636,
39
, pp.
538
547
.
5.
Lakhtakia
,
A.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
, 1988, “
Reflection Characteristics of an Elastic Slab Containing a Periodic Array of Circular Elastic Cylinders: P and SV Wave Analysis
,”
J. Acoust. Soc. Am.
0001-4966,
83
, pp.
1267
1275
.
6.
Achenbach
,
J. D.
, and
Kitahara
,
M.
, 1986, “
Reflection and Transmission of an Obliquely Incident Wave by an Array of Spherical Cavities
,”
J. Acoust. Soc. Am.
0001-4966,
80
, pp.
1209
1214
.
7.
Maslov
,
K.
,
Kinra
,
V. K.
, and
Henderson
,
B. K.
, 2000, “
Elastodynamic Response of a Coplanar Periodic Layer of Elastic Spherical Inclusions
,”
Mech. Mater.
0167-6636,
32
, pp.
785
795
.
8.
Kanaun
,
S.
, and
Levin
,
V.
, 2005, “
Propagation of Shear Elastic Waves in Composites With a Random Set of Spherical Inclusions (Effective Field Approach)
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3971
3997
.
9.
Sabina
,
F. J.
, and
Willis
,
J. R.
, 1988, “
A Simple Self-Consistent Analysis of Wave-Propagation in Particulate Composite
,”
Wave Motion
0165-2125,
10
, pp.
127
142
.
10.
Yang
,
R. B.
, 2003, “
A Dynamic Generalized Self-Consistent Model for Wave Propagation in Particulate Composites
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
575
582
.
11.
Wang
,
Y. S.
, and
Wang
,
D.
, 1996, “
Scattering of Elastic Waves by a Rigid Cylindrical Inclusion Partially Debonded From Its Surrounding Matrix I. SH Case
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2789
2815
.
12.
Wang
,
X.
, and
Sudak
,
L. J.
, 2007, “
Scattering of Elastic Waves by Multiple Elastic Circular Cylinders With Imperfect Interface
,”
Waves Random Complex Media
1745-5030,
17
, pp.
159
187
.
13.
Gleiter
,
H.
, 2000, “
Nanostructured Materials: Basic Concepts and Microstructure
,”
Acta Mater.
1359-6454,
48
, pp.
1
29
.
14.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
, pp.
139
147
.
15.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
, 2005, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1827
1854
.
16.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
, 2007, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects. Part I: Theoretical Framework
,”
Mech. Mater.
0167-6636,
39
, pp.
81
93
.
17.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Yu
,
C. C.
, 2007, “
Size-Dependent Elastic Properties of Unidirectional Nano-Composites With Interface Stresses
,”
Acta Mech.
0001-5970,
188
, pp.
39
54
.
18.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
535
537
.
19.
Wang
,
G. F.
,
Feng
,
X. Q.
,
Wang
,
T. J.
, and
Gao
,
W.
, 2008, “
Surface Effects on the Near-Tip Stresses for Mode-I and Mode-III Cracks
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
011001
.
20.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
Continuum Theory of Elastic-Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
, pp.
291
323
.
21.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
, 1998, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
, pp.
1093
1109
.
22.
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
, 2007, “
Interface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Spherical Inclusion
,”
J. Appl. Phys.
0021-8979,
102
, p.
043533
.
23.
Wang
,
G. F.
,
Wang
,
T. J.
, and
Feng
,
X. Q.
, 2006, “
Surface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Circular Hole
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
231923
.
24.
Abramowitza
,
M.
, and
Stegun
,
I. A.
, 1965,
Handbook of Mathematical Functions
,
Natl. Bur. Stand
,
Washington, DC
, p.
363
.
25.
Wang
,
D. F.
,
Ono
,
T.
, and
Esashi
,
M.
, 2004, “
Thermal Treatments and Gas Adsorption Influences on Nanomechanics of Ultra-Thin Silicon Resonators for Ultimate Sensing
,”
Nanotechnology
0957-4484,
15
, pp.
1851
1854
.
26.
Wang
,
G. F.
, and
Feng
,
X. Q.
, 2007, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
231904
.
You do not currently have access to this content.