When the radius of a hole reduces to nanometers, the influence of surface energy becomes prominent in its mechanical behavior. In the present paper, we consider the diffraction of plane compressional waves by an array of nanosized circular holes in an elastic medium. The effect of surface energy is taken into account through surface elasticity theory. Using the wave expansion method, we derive the corresponding elastic diffraction fields. Dynamic stress concentrations around the holes and the scattering cross section are calculated to address the surface effects on the diffraction phenomena.
Issue Section:
Research Papers
1.
Pao
, Y. H.
, and Mow
, C. C.
, 1973, Diffractions of Elastic Waves and Dynamic Stress Concentrations
, Crane, Russak
, New York
, Chap. 3.2.
Jain
, D. L.
, and Kanwal
, R. P.
, 1979, “Scattering of Elastic Waves by Circular Flaws and Inclusions
,” J. Appl. Phys.
0021-8979, 50
, pp. 4067
–4109
.3.
Terrón
, J. M.
, Sánchez-Lavega
, A.
, and Salazar
, A.
, 2000, “Multiple Scattering Effects of Thermal Waves by Two Subsurface Cylinders
,” J. Appl. Phys.
0021-8979, 87
, pp. 2600
–2607
.4.
Fang
, X. Q.
, Hu
, C. W.
, and Huang
, H.
, 2007, “Scattering of Elastic Waves and Dynamic Stress in Two-Particle Reinforced Composite System
,” Mech. Mater.
0167-6636, 39
, pp. 538
–547
.5.
Lakhtakia
, A.
, Varadan
, V. V.
, and Varadan
, V. K.
, 1988, “Reflection Characteristics of an Elastic Slab Containing a Periodic Array of Circular Elastic Cylinders: P and SV Wave Analysis
,” J. Acoust. Soc. Am.
0001-4966, 83
, pp. 1267
–1275
.6.
Achenbach
, J. D.
, and Kitahara
, M.
, 1986, “Reflection and Transmission of an Obliquely Incident Wave by an Array of Spherical Cavities
,” J. Acoust. Soc. Am.
0001-4966, 80
, pp. 1209
–1214
.7.
Maslov
, K.
, Kinra
, V. K.
, and Henderson
, B. K.
, 2000, “Elastodynamic Response of a Coplanar Periodic Layer of Elastic Spherical Inclusions
,” Mech. Mater.
0167-6636, 32
, pp. 785
–795
.8.
Kanaun
, S.
, and Levin
, V.
, 2005, “Propagation of Shear Elastic Waves in Composites With a Random Set of Spherical Inclusions (Effective Field Approach)
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 3971
–3997
.9.
Sabina
, F. J.
, and Willis
, J. R.
, 1988, “A Simple Self-Consistent Analysis of Wave-Propagation in Particulate Composite
,” Wave Motion
0165-2125, 10
, pp. 127
–142
.10.
Yang
, R. B.
, 2003, “A Dynamic Generalized Self-Consistent Model for Wave Propagation in Particulate Composites
,” ASME J. Appl. Mech.
0021-8936, 70
, pp. 575
–582
.11.
Wang
, Y. S.
, and Wang
, D.
, 1996, “Scattering of Elastic Waves by a Rigid Cylindrical Inclusion Partially Debonded From Its Surrounding Matrix I. SH Case
,” Int. J. Solids Struct.
0020-7683, 33
, pp. 2789
–2815
.12.
Wang
, X.
, and Sudak
, L. J.
, 2007, “Scattering of Elastic Waves by Multiple Elastic Circular Cylinders With Imperfect Interface
,” Waves Random Complex Media
1745-5030, 17
, pp. 159
–187
.13.
Gleiter
, H.
, 2000, “Nanostructured Materials: Basic Concepts and Microstructure
,” Acta Mater.
1359-6454, 48
, pp. 1
–29
.14.
Miller
, R. E.
, and Shenoy
, V. B.
, 2000, “Size-Dependent Elastic Properties of Nanosized Structural Elements
,” Nanotechnology
0957-4484, 11
, pp. 139
–147
.15.
Dingreville
, R.
, Qu
, J.
, and Cherkaoui
, M.
, 2005, “Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,” J. Mech. Phys. Solids
0022-5096, 53
, pp. 1827
–1854
.16.
Duan
, H. L.
, Yi
, X.
, Huang
, Z. P.
, and Wang
, J.
, 2007, “A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects. Part I: Theoretical Framework
,” Mech. Mater.
0167-6636, 39
, pp. 81
–93
.17.
Chen
, T.
, Dvorak
, G. J.
, and Yu
, C. C.
, 2007, “Size-Dependent Elastic Properties of Unidirectional Nano-Composites With Interface Stresses
,” Acta Mech.
0001-5970, 188
, pp. 39
–54
.18.
Sharma
, P.
, Ganti
, S.
, and Bhate
, N.
, 2003, “Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,” Appl. Phys. Lett.
0003-6951, 82
, pp. 535
–537
.19.
Wang
, G. F.
, Feng
, X. Q.
, Wang
, T. J.
, and Gao
, W.
, 2008, “Surface Effects on the Near-Tip Stresses for Mode-I and Mode-III Cracks
,” ASME J. Appl. Mech.
0021-8936, 75
, p. 011001
.20.
Gurtin
, M. E.
, and Murdoch
, A. I.
, 1975, “Continuum Theory of Elastic-Material Surfaces
,” Arch. Ration. Mech. Anal.
0003-9527, 57
, pp. 291
–323
.21.
Gurtin
, M. E.
, Weissmuller
, J.
, and Larche
, F.
, 1998, “A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,” Philos. Mag. A
0141-8610, 78
, pp. 1093
–1109
.22.
Wang
, G. F.
, Feng
, X. Q.
, and Yu
, S. W.
, 2007, “Interface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Spherical Inclusion
,” J. Appl. Phys.
0021-8979, 102
, p. 043533
.23.
Wang
, G. F.
, Wang
, T. J.
, and Feng
, X. Q.
, 2006, “Surface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Circular Hole
,” Appl. Phys. Lett.
0003-6951, 89
, p. 231923
.24.
Abramowitza
, M.
, and Stegun
, I. A.
, 1965, Handbook of Mathematical Functions
, Natl. Bur. Stand
, Washington, DC
, p. 363
.25.
Wang
, D. F.
, Ono
, T.
, and Esashi
, M.
, 2004, “Thermal Treatments and Gas Adsorption Influences on Nanomechanics of Ultra-Thin Silicon Resonators for Ultimate Sensing
,” Nanotechnology
0957-4484, 15
, pp. 1851
–1854
.26.
Wang
, G. F.
, and Feng
, X. Q.
, 2007, “Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,” Appl. Phys. Lett.
0003-6951, 90
, p. 231904
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.