Problem of matching a desired fundamental natural frequency is solved in the closed form for the polar-orthotropic inhomogeneous circular plate, which is clamped along its circumference. The vibration tailoring is performed by posing a semi-inverse eigenvalue problem. To do this, the fundamental mode shape is postulated. Namely, the analytical expression due to Lekhnitskii, and pertaining to the static deflection of the homogeneous circular plate is demanded to serve as an exact mode shape of the inhomogeneous plate. The analytical and numerical results are reported for several ratios of orthotropic coefficient.

1.
Shirk
,
M. H.
,
Hertz
,
T. J.
, and
Weisshaar
,
T. A.
, 1986, “
Aerolastic Tailoring—Theory, Practice and Promise
,”
J. Aircr.
0021-8669,
23
(
1
), pp.
6
18
.
2.
Rehfield
,
L. W.
, and
Atilgan
,
A. R.
, 1989, “
Toward Understanding the Tailoring Mechanisms for Thin-Walled Composite Tubular Beams
,”
First USSR-USA Symposium on Mechanics of Composite Materials
,
T. C.
Tsai
,
J. M.
Whitney
, and
R.
Jones
, eds.,
ASME
,
New York
.
3.
Engelstad
,
S. P.
, 1995, “
Optimization Strategies for Minimum Interior Noise and Weight Using FEM/BEM
,”
Proceedings of Inter-Noise ’95
.
4.
Pal
,
C.
, and
Hagiwara
,
I.
, 1993, “
Dynamic Analysis of Coupled Structural-Acoustic Problem: Simultaneous Multimodal Reduction of Vehicle Interior Noise Level by Combined Optimization
,”
Finite Elem. Anal. Design
0168-874X,
14
, pp.
225
234
.
5.
Librescu
,
L.
,
Qin
,
Z. M.
, and
Ambur
,
D. R.
, 2003, “
Implications of Warping Restraint on Statics and Dynamics of Elastically Tailored Thin-Walled Composite Beams
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
1247
1267
.
6.
Constans
,
E. W.
,
Koopmann
,
G. H.
, and
Belegundu
,
A. D.
, 1998, “
The Use of Modal Tailoring to Minimize the Radiated Sound Power of Vibrating Shells: Theory and Experiment
,”
J. Sound Vib.
0022-460X,
217
(
2
), pp.
335
350
.
7.
Piovan
,
M. T.
, and
Cortinez
,
V. H.
, 2002, “
Vibration Studies of Composite Thin-Walled Curved Box-Beam Using Structural Tailoring
,”
J. Sound Vib.
0022-460X,
256
(
5
), pp.
989
995
.
8.
Prathap
,
G.
, and
Varadan
,
T. K.
, 1976, “
Axisymmetric Vibrations of Polar Orthotropic Circular Plates
,”
AIAA J.
0001-1452,
14
(
11
), pp.
1639
1640
.
9.
Leissa
,
A. W.
, 1978, “
Recent Research in Plate Vibrations 1973-1976: Complicating Effects
,”
Shock Vib. Dig.
0583-1024,
10
(
12
), pp.
21
35
.
10.
Woo
,
H. K.
,
Kirmser
,
P. G.
, and
Huang
,
C. L.
, 1973, “
Vibration of Orthotropic Circular Plates With Concentric Isotropic Core
,”
AIAA J.
0001-1452,
11
, pp.
1421
1423
.
11.
Rao
,
K. S.
,
Ganapathi
,
K.
, and
Rao
,
G. V.
, 1974, “
Vibration of Cylindrically Orthotropic Circular Plates
,”
J. Sound Vib.
0022-460X,
36
(
3
), pp.
433
434
.
12.
Greenberg
,
J. B.
, and
Stavsky
,
Y.
, 1979, “
Flexural Vibrations of Certain Full and Annular Composite Orthotropic Plates
,”
J. Acoust. Soc. Am.
0001-4966,
66
(
2
), pp.
501
508
.
13.
Narita
,
Y.
, 1984, “
Free Vibration of Continuous Polar Orthotropic Annular and Circular Plates
,”
J. Sound Vib.
0022-460X,
93
(
4
), pp.
503
511
.
14.
Laura
,
P. A. A.
,
Avalos
,
D. R.
, and
Galles
,
C. D.
, 1982, “
Vibrations and Elastic Stability of Polar Orthotropic Circular Plates of Linearly Varying Thickness
,”
J. Sound Vib.
0022-460X,
82
(
1
), pp.
151
156
.
15.
Lal
,
R.
, and
Gupta
,
U. S.
, 1982, “
Axisymmetric Vibrations of Polar Orthotropic Annular Plates of Variable Thickness
,”
J. Sound Vib.
0022-460X,
83
(
2
), pp.
229
240
.
16.
Gorman
,
D. G.
, 1983, “
Natural Frequencies of Transverse Vibration of Polar Orthotropic Variable Thickness Annular Plate
,”
J. Sound Vib.
0022-460X,
86
(
1
), pp.
47
60
.
17.
Bert
,
C. W.
, 1982, “
Research on Dynamics of Composite and Sandwich Plates, 1979-81
,”
Shock Vib. Dig.
0583-1024,
14
(
10
), pp.
17
34
.
18.
Rao
,
S. S.
, and
Singh
,
K.
, 1979, “
Optimum Design of Laminates With Natural Frequency Constraints
,”
J. Sound Vib.
0022-460X,
67
(
1
), pp.
101
112
.
19.
Bert
,
C. W.
, 1977, “
Optimal Design of a Composite-Material Plate to Maximize its Fundamental Frequency
,”
J. Sound Vib.
0022-460X,
50
(
2
), pp.
229
237
.
20.
Bert
,
C. W.
, 1978, “
Design of Clamped Composite-Material Plates to Maximize Fundamental Frequency
,”
ASME J. Mech. Des.
0161-8458,
100
(
2
), pp.
274
278
.
21.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
,
Gordon and Breach
,
New York
, pp.
318
393
.
You do not currently have access to this content.