In this paper, the antiplane harmonic dynamics stress of an infinite isotropic wedge with a circular cavity is analyzed for the first time by using a novel method with Green’s function, complex functions, and multipolar coordinates. A basic solution for the displacement field of an elastic half-space containing a circular cavity subjected to antiplane harmonic point force is employed as the Green’s function. Based on the Green’s function, the infinite wedge problem is equivalently transformed into the problem of a half-space divided by a semi-infinite traction free line. The equivalent problem is solved numerically to determine the dynamic stress field in the wedge at different apex angles and cavity locations. We show that the wedge angle, cavity location, and incident angle and frequency of the external load have significant effect on the dynamic stress of the cavity surface. The dynamic stress concentration factor on the cavity surface becomes singular when the cavity is close to the boundary of the wedge.

1.
Shahani
,
A. R.
, 1999, “
Analysis of an Anisotropic Finite Wedge Under Antiplane Deformation
,”
J. Elast.
0374-3535,
56
, pp.
17
32
.
2.
Shahani
,
A. R.
, 2003, “
Mode III Stress Intensity Factors for Edge-Cracked Circular Shafts, Bonded Wedges, Bonded Half Planes and DCB’s
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
6567
6576
.
3.
Shahani
,
A. R.
, 2005, “
Some Problems in the Antiplane Shear Deformation of Bi-Material Wedges
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3093
3113
.
4.
Shahani
,
A. R.
, 2006, “
Model III Stress Intensity Factors in an Interfacial Crack in Dissimilar Bonded Materials
,”
Arch. Appl. Mech.
0939-1533,
75
, pp.
405
411
.
5.
Tranter
,
C. J.
, 1948, “
The Use of the Mellin Transform in Finding the Stress Distribution in an Infinite Wedge
,”
Q. J. Mech. Appl. Math.
0033-5614,
1
, pp.
125
130
.
6.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
0021-8936,
19
, pp.
526
528
.
7.
Dempsey
,
J. P.
, and
Sinclair
,
G. B.
, 1979, “
On the Stress Singularities in the Plane Elasticity of the Composite Wedge
,”
J. Elast.
0374-3535,
9
, pp.
373
391
.
8.
Dempsey
,
J. P.
, 1981, “
The Wedge Subjected to Tractions: A Paradox Resolved
,”
J. Elast.
0374-3535,
11
, pp.
l
10
.
9.
Lévy
,
M.
, 1899, “
Sur La Legitimite De La Regle Dite Du Trapeze Dans L’etude De La Resistance Des Barrages En Maconnerie
,”
Compt. Rend.
0001-4036,
126
, pp.
1235
1240
.
10.
Ting
,
T. C. T.
, 1984, “
The Wedge Subjected to Tractions: A Paradox Re-Examined
,”
J. Elast.
0374-3535,
14
, pp.
235
247
.
11.
Ting
,
T. C. T.
, 1985, “
Elastic Wedge Subjected to Antiplane Shear Traction—A Paradox Explained
,”
Q. J. Mech. Appl. Math.
0033-5614,
38
, pp.
245
255
.
12.
Kargarnovin
,
M. H.
, and
Shahani
,
A. R.
, 1997, “
Analysis of an Isotropic Finite Wedge Under Anti-Plane Deformation
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
113
128
.
13.
Shahani
,
A. R.
, 2007, “
On the Anti-Plane Shear Deformation of Finite Wedges
,”
Appl. Math. Model.
0307-904X,
31
, pp.
141
151
.
14.
Faal
,
R. T.
,
Fotuhi
,
A. R.
,
Fariborz
,
S. J.
, and
Daghyani
,
H. R.
, 2004, “
Anti-Plane Stress Analysis of an Isotropic Wedge With Multiple Cracks
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
4535
4550
.
15.
Faal
,
R. T.
,
Fariborz
,
S. J.
, and
Daghyani
,
H. R.
, 2007, “
Stress Analysis of a Finite Wedge Weakened by Cavities
,”
Int. J. Mech. Sci.
0020-7403,
49
, pp.
75
85
.
16.
Achenbach
,
J. D.
, 1968, “
Wedge-Like Waves in a Composite Medium
,”
Int. J. Eng. Sci.
0020-7225,
6
, pp.
223
232
.
17.
Achenbach
,
J. D.
, 1970, “
Shear Waves in an Elastic Wedge
,”
Int. J. Solids Struct.
0020-7683,
6
, pp.
379
388
.
18.
Dermendjian
,
N.
,
Lee
,
V. W.
, and
Liang
,
J. W.
, 2003, “
Anti-Plane Deformations Around Arbitrary-Shaped Canyons on a Wedge-Shape Half-Space: Moment Method Solutions
,”
Earth. Eng. Eng. Vibra.
,
2
, pp.
281
287
.
19.
Liu
,
G.
, and
Liu
,
D. K.
, 2007, “
The Ground Motion of an Isosceles Triangular Hill Above a Subsurface Cavity With Incident SH Waves
,”
Acta Mech. Solida Sinica
0894-9166,
28
, pp.
60
66
.
20.
Liu
,
D. K.
,
Gai
,
B. Z.
, and
Tao
,
G. Y.
, 1982, “
Applications of the Method of Complex Functions to Dynamic Stress Concentrations
,”
Wave Motion
0165-2125,
4
, pp.
293
304
.
21.
Liu
,
D.
, and
Han
,
F.
, 1993, “
The Scattering of Plane SH-Waves by Noncircular Cavity in Anisotropic Media
,”
ASME J. Appl. Mech.
0021-8936,
60
(
3
), pp.
769
772
.
22.
Hudson
,
J. A.
, 1980,
The Excitation and Propagation of Elastic Waves
,
University of Cambridge
,
Cambridge
.
23.
Pao
,
Y. H.
, and
Mow
,
C. C.
, 1973,
Diffraction of Elastic Waves and Dynamic Stress Concentrations
,
Crane, Russak & Company Inc.
,
New York
.
24.
Lee
,
V. W.
,
Chen
,
S.
, and
Hsu
,
I. R.
, 1999, “
Anti-Plane Diffraction From Canyon Above Subsurface Unlined Tunnel
,”
J. Eng. Mech.
0733-9399,
125
, pp.
668
674
.
25.
Lee
,
V. W.
, 1977, “
On the Deformations Near Circular Underground Cavity Subjected to Incident Plane SH-Waves
,” University of Southern California, Los Angeles, CA.
26.
Lee
,
V. W.
, and
Trifunac
,
M. D.
, 1979, “
Response of Tunnels to Incident SH-Waves
,”
J. Eng. Mech.
0733-9399,
105
, pp.
643
659
.
27.
Sanchez-sesma
,
F. J.
, 1990, “
Elementary Solutions for Response of a Wedge-Shaped Medium to Incident SH and SV Waves
,”
Bull. Seismol. Soc. Am.
0037-1106,
80
, pp.
737
742
.
You do not currently have access to this content.