Abstract

Thermomechanical stress and displacement fields for a propagating crack in functionally graded materials (FGMs) are developed using displacement potentials and asymptotic analysis. The shear modulus, mass density, and coefficient of thermal expansion of the FGMs are assumed to vary exponentially along the gradation direction. Temperature and heat flux distribution fields are also derived for an exponential variation of thermal conductivity. The mode mixity due to mixed-mode loading conditions around the crack tip is accommodated in the analysis through the superposition of opening and shear modes. Using the asymptotic stress fields, the contours of isochromatics (contours of constant maximum shear stress) are developed and the results are discussed for various crack-tip thermomechanical loading conditions.

1.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials, Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites
,
IOM Communications Ltd.
,
London
.
2.
Hasselman
,
D. P. H.
, and
Youngblood
,
G. E.
, 1978, “
Enhanced Thermal Stress Resistance of Structural Ceramics with Thermal Conductivity Gradient
,”
J. Am. Ceram. Soc.
0002-7820,
61
, pp.
49
52
.
3.
Kawasaki
,
A.
, and
Wananabe
,
R.
, 1987, “
Finite Element Analysis of Thermal Stress of the Metal∕Ceramics Multi-layer Composites With Controlled Compositional Gradients
,”
J. Jpn. Inst. Met.
0021-4876,
51
, pp.
525
529
.
4.
Drake
,
J. T.
,
Williamson
,
R. L.
, and
Rabin
,
B. H.
, 1993, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces—Part II: Interface Optimization for Residual Stress Reduction
,”
J. Appl. Phys.
0021-8979,
74
, pp.
1321
1326
.
5.
Giannakopoulos
,
A. E.
,
Suresh
,
S.
,
Finot
,
M.
, and
Olsson
,
M.
, 1995, “
Elastoplastic Analysis of Thermal Cycling: Layered Materials With Compositional Gradient
,”
Acta Metall. Mater.
0956-7151,
43
, pp.
1335
1354
.
6.
Kuroda
,
Y.
,
Kusaka
,
K.
,
Moro
,
A.
, and
Togawa
,
M.
, 1993, “
Evaluation Tests of ZrO2∕Ni Functionally Gradient Materials for Regeneratively Cooled Thrust Engine Applications
,”
Functionally Gradient Materials (Ceramic Transactions)
,
J. B.
Holt
,
M.
Koisumi
,
T.
Hirai
, and
Z. A.
Munir
, eds.,
American Ceramic Society
,
Westerville, OH
, Vol.
34
, pp.
289
296
.
7.
Takahashi
,
H.
,
Ishikawa
,
T.
,
Okugawa
,
D.
, and
Hashida
,
T.
, 1993, “
Laser and Plasma-ARC Thermal Shock∕Fatigue Fracture Evaluation Procedure for Functionally Gradient Materials
,”
Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics
,
G. A.
Scheneider
and
G.
Petzow
, eds.,
Kluwer Academic
,
Dordrecht
, pp.
543
554
.
8.
Jin
,
Z. H.
, and
Noda
,
N.
, 1994, “
Crack-Tip Singular Fields in Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
738
740
.
9.
Erdogan
,
F.
, and
Wu
,
B.
, 1996, “
Crack Problems in FGM Layers Under Thermal Stresses
,”
J. Therm. Stresses
0149-5739,
19
, pp.
237
265
.
10.
Jin
,
Z. H.
, and
Batra
,
R. C.
, 1996, “
Stress Intensity Relaxation at the Tip of an Edge Crack in a Functionally Graded Materials Subjected to a Thermal Shock
,”
J. Therm. Stresses
0149-5739,
19
, pp.
317
339
.
11.
Kokini
,
K.
, and
Choules
,
B. D.
, 1995, “
Surface Thermal Fracture of Functionally Graded Ceramic Coatings: Effect of Architecture and Materials
,”
Composites Eng.
0961-9526,
5
, pp.
865
877
.
12.
Kokini
,
K.
, and
Case
,
M.
, 1997, “
Initiation of Surface and Interface Edge Cracks in Functionally Graded Ceramic Thermal Barrier Coatings
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
148
152
.
13.
Noda
,
N.
, 1997, “
Thermal Stress Intensity for Functionally Graded Plate With an Edge Crack
,”
J. Therm. Stresses
0149-5739,
20
, pp.
373
387
.
14.
Jin
,
Z.-H.
, and
Paulino
,
G. H.
, 2001, “
Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material
,”
Int. J. Fract.
0376-9429,
107
, pp.
73
98
.
15.
Walters
,
M. C.
,
Paulino
,
G. C.
, and
Dodds
,
R. H.
, Jr.
, 2004, “
Stress-Intensity Factors for Surface Cracks in Functionally Graded Materials Under Mode-I Thermomechanical Loading
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1081
1118
.
16.
El-Borgi
,
S.
,
Erdogan
,
F.
, and
Hidri
,
L.
, 2004, “
A Partially Insulated Embedded Crack in an Infinite Functionally Graded Medium Under Thermo-Mechanical Loading
,”
Int. J. Eng. Sci.
0020-7225,
42
(
3–4
), pp.
371
393
.
17.
Zhang
,
Z. Y.
,
Paulino
,
G. H.
, 2007, “
Wave Propagation and Dynamic Analysis of Smoothly Graded Heterogeneous Continua Using Graded Finite Elements
,”
Int. J. Solids Struct.
0020-7683,
44
(
11–12
), pp.
3601
3626
.
18.
Jain
,
N.
,
Shukla
,
A.
, and
Chona
,
R.
, 2006, “
Asymptotic Stress Fields for Thermomechanically Loaded Cracks in FGMs
,”
J. ASTM Int.
1546-962X,
3
(
7
), pp.
88
90
.
19.
Freund
,
L. B.
, 1990,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge
.
20.
Shukla
,
A.
, and
Jain
,
N.
, 2004, “
Dynamic Damage Growth in Particle Reinforced Graded Materials
,”
Int. J. Impact Eng.
0734-743X,
30
, pp.
777
803
.
21.
Jain
,
N.
, and
Shukla
,
A.
, 2006, “
Mixed Mode Dynamic Fracture in Particulate Functionally Graded Materials
,”
Exp. Mech.
0014-4851,
46
(
2
), pp.
137
154
.
22.
Lee
,
K. H.
, 2004, “
Characteristics of a Crack Propagating Along the Gradient in Functionally Gradient Materials
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2879
2898
.
23.
Dally
,
J. W.
, and
Riley
,
F. W.
, 2001,
Experimental Stress Analysis
, 3rd ed.,
College House Enterprises
,
TN
.
24.
Parameswaran
,
V.
, and
Shukla
,
A.
, 2002, “
Asymptotic Stress Fields for Stationary Cracks in Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
240
243
.
You do not currently have access to this content.