The characteristics of the frequency response function of a nonviscously damped linear oscillator are considered in this paper. It is assumed that the nonviscous damping force depends on the past history of velocity via a convolution integral over an exponentially decaying kernel function. The classical dynamic response properties, known for viscously damped oscillators, have been generalized to such nonviscously damped oscillators. The following questions of fundamental interest have been addressed: (a) Under what conditions can the amplitude of the frequency response function reach a maximum value?, (b) At what frequency will it occur?, and (c) What will be the value of the maximum amplitude of the frequency response function? Introducing two nondimensional factors, namely, the viscous damping factor and the nonviscous damping factor, we have provided exact answers to these questions. Wherever possible, attempts have been made to relate the new results with equivalent classical results for a viscously damped oscillator. It is shown that the classical concepts based on viscously damped systems can be extended to a nonviscously damped system only under certain conditions.

1.
Woodhouse
,
J.
, 1998, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
0022-460X,
215
(
3
), pp.
547
569
.
2.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1983, “
Fractional Calculus—a Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
0001-1452,
21
(
5
), pp.
741
748
.
3.
Torvik
,
P. J.
, and
Bagley
,
R. L.
, 1987, “
Fractional Derivatives in the Description of Damping: Materials and Phenomena
,”
The Role of Damping in Vibration and Noise Control
, ASME Report No. DE-5.
4.
Gaul
,
L.
,
Klein
,
P.
, and
Kemple
,
S.
, 1991, “
Damping Description Involving Fractional Operators
,”
Mech. Syst. Signal Process.
0888-3270,
5
(
2
), pp.
81
88
.
5.
Maia
,
N. M. M.
,
Silva
,
J. M. M.
, and
Ribeiro
,
A. M. R.
, 1998, “
On a General Model for Damping
,”
J. Sound Vib.
0022-460X,
218
(
5
), pp.
749
767
.
6.
Bland
,
D. R.
, 1960,
Theory of Linear Viscoelasticity
,
Pergamon Press
,
London
.
7.
Christensen
,
R. M.
, 1982,
Theory of Viscoelasticity
, 1st ed.,
Academic Press
,
New York
(reprinted by
Dover Publication Inc.
, 2003, 2nd ed.).
8.
Biot
,
M. A.
, 1955, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
0031-899X,
97
(
6
), pp.
1463
1469
.
9.
Muravyov
,
A.
, and
Hutton
,
S. G.
, 1997, “
Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
684
691
.
10.
Muravyov
,
A.
, and
Hutton
,
S. G.
, 1998, “
Free Vibration Response Characteristics of a Simple Elasto-hereditary System
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
628
632
.
11.
Palmeri
,
A.
,
Ricciardelli
,
F.
,
Luca
,
A. D.
, and
Muscolino
,
G.
, 2003, “
State Space Formulation for Linear Viscoelastic Dynamic Systems With Memory
,”
J. Eng. Mech.
0733-9399,
129
(
7
), pp.
715
724
.
12.
Palmeri
,
A.
,
Ricciardelli
,
F.
,
Muscolino
,
G.
, and
Luca
,
A. D.
, 2004, “
Random Vibration of Systems With Viscoelastic Memory
,”
J. Eng. Mech.
0733-9399,
130
(
9
), pp.
1052
1061
.
13.
Wagner
,
N.
, and
Adhikari
,
S.
, 2003, “
Symmetric State-Space Formulation for a Class of Non-viscously Damped Systems
,”
AIAA J.
0001-1452,
41
(
5
), pp.
951
956
.
14.
Adhikari
,
S.
, and
Wagner
,
N.
, 2003, “
Analysis of Asymmetric Non-viscously Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
70
(
6
), pp.
885
893
.
15.
Cremer
,
L.
, and
Heckl
,
M.
, 1973,
Structure-Borne Sound
, 2nd ed.,
Springer-Verlag
,
Berlin, Germany
(translated by E. E. Ungar).
16.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2001, “
Identification of Damping: Part, 2, Non-viscous Damping
,”
J. Sound Vib.
0022-460X,
243
(
1
), pp.
63
88
.
17.
McTavish
,
D. J.
, and
Hughes
,
P. C.
, 1993, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
103
110
.
18.
Adhikari
,
S.
, 2002, “
Dynamics of Non-viscously Damped Linear Systems
,”
J. Eng. Mech.
0733-9399,
128
(
3
), pp.
328
339
.
19.
Adhikari
,
S.
, 2005, “
Qualitative Dynamic Characteristics of a Non-viscously Damped Oscillator
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
,(
2059
), pp.
2269
2288
.
20.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2003, “
Quantification of Non-viscous Damping in Discrete Linear Systems
,”
J. Sound Vib.
0022-460X,
260
(
3
), pp.
499
518
.
21.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1965,
Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables
,
Dover Publications
,
New York
.
22.
Muller
,
P.
, 2005, “
Are the Eigensolutions of a 1-d.o.f. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
0022-460X,
285
(
1–2
), pp.
501
509
.
23.
Vinokur
,
R.
, 2003, “
The Relationship Between the Resonant and Natural Frequency for Non-viscous Systems
,”
J. Sound Vib.
0022-460X,
267
, pp.
187
189
.
24.
Dickson
,
L. E.
, 1898, “
A New Solution of the Cubic Equation
,”
Am. Math. Monthly
,
5
, pp.
38
39
.
You do not currently have access to this content.