A simplified numerical procedure to predict springback in a 2D draw bend test was developed based on the hybrid method which superposes bending effects onto membrane solutions. In particular, the procedure was applied for springback analysis of a specially designed draw bend test with directly controllable restraining forces. As a semi-analytical method, the new approach was especially useful to analyze the effects of various process and material parameters on springback. The model can accommodate general anisotropic yield functions along with nonlinear isotropic-kinematic hardening under the plane strain condition. For sensitivity analysis, process effects such as the amount of bending curvature, normalized back force and friction, as well as material property effects such as hardening behavior including the Bauschinger effect and yield surface shapes were studied. Also, for validation purposes, the new procedure was applied for the springback analysis of the dual-phase high strength steel and results were compared with experiments.

1.
Gardiner
,
F. J.
, 1957, “
The Springback of Metals
,”
Trans. ASME
0097-6822,
79
(
1
), pp.
1
9
.
2.
Queener
,
C. A.
, and
De Angelis
,
R. J.
, 1968, “
Elastic Springback and Residual Stresses in Sheet Formed by Bending
,”
Trans. Inst. Electron., Inf. Commun. Eng. D-II
0915-1923,
61
, pp.
757
768
.
3.
Baba
,
A.
, 1964, “
Effect of Tensile Force in Stretch-Forming Process on the Springback
,”
Bull. JSME
0021-3764,
7
, pp.
834
843
.
4.
Wang
,
C.
,
Kinzel
,
G.
, and
Altan
,
T.
, 1993, “
Mathematical Modeling of Plane-Strain Bending of Sheet and Plate
,”
J. Mater. Process. Technol.
0924-0136,
39
, pp.
279
304
.
5.
Chan
,
K. C.
, and
Wang
,
S. H.
, 1999, “
Theoretical Analysis of Springback in Bending of Integrated Circuit Leadframes
,”
J. Mater. Process. Technol.
0924-0136,
91
(
13
), pp.
111
115
.
6.
Johnson
,
W.
, and
Yu
,
T. X.
, 1981, “
Springback After the Biaxial Elastic-Plastic Pure Bending of a Rectangular Plate
,”
Int. J. Mech. Sci.
0020-7403,
23
(
10
), pp.
619
30
.
7.
Yu
,
T. X.
, and
Johnson
,
W.
, 1982, “
Influence of Axial Force on the Elastic-Plastic Bending and Springback of a Beam
,”
J. Mech. Work. Technol.
0378-3804,
6
(
1
), pp.
5
21
.
8.
Sudo
,
C.
,
Kojima
,
M.
, and
Matsuoka
,
T.
, 1974, “
Some Investigations on Elastic Recovery of Press Formed Part
,”
Proceedings of the 8th Biennial Congress of IDDRG
, p.
192
.
9.
Thompson
,
N. E.
, and
Ellen
,
C. H.
, 1985, “
A Simple Theory for Side-Wall Curl
,”
Journal of Applied Metalworking
,
4
(
1
), pp.
39
42
.
10.
Jeunechamps
,
P. P.
,
Ho
,
K. C.
,
Lin
,
J.
,
Ponthot
,
J. P.
,
Dean
,
T. A.
, 2006, “
A Closed Form Technique to Predict Springback in Creep Age-Forming
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
621
629
.
11.
Kawaguchi
,
T.
,
Imatani
,
S.
, and
Yamaguchi
,
K.
, 1994, “
An Elasto-Viscoplastic Finite Element Analysis of Sheet Metal Bending Process
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
35
, pp.
125
130
.
12.
Mattiasson
,
K.
,
Strange
,
A.
,
Thilderkvist
,
P.
, and
Samuelsson
,
A.
, 1995, “
Springback in Sheet Metal Forming
,”
5th International Conference on Numerical Methods in Industrial Forming Process
, New York, pp.
115
124
.
13.
He
,
N.
, and
Wagoner
,
R. H.
, 1996, “
Springback Simulation in Sheet Metal Forming
,”
Proceedings of Numisheet’96
, edited by
J. K.
Lee
,
G. L.
Kinzel
, and
R. H.
Wagoner
, eds., The Ohio State University, pp.
308
315
.
14.
Li
,
K. P.
,
Carden
,
W. P.
, and
Wagoner
,
R. H.
, 2001, “
Simulation of Springback
,”
Int. J. Mech. Sci.
0020-7403,
44
(
1
), pp.
103
122
.
15.
Geng
,
L.
, and
Wagoner
,
R. H.
, 2002, “
Role of Plastic Anisotropy and Its Evolution on Springback
,”
Int. J. Mech. Sci.
0020-7403,
44
(
1
), pp.
123
148
.
16.
Chung
,
K.
,
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Barlat
,
F.
, 2005, “
Springback Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions—Part I: Theory and Formulation
,”
Int. J. Plast.
0749-6419,
21
(
5
), pp.
861
882
.
17.
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wagoner
,
R. H.
,
Wenner
,
M. L.
, and
Chung
,
K.
, 2005, “
Springback Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions—Part II: Characterizations of Material Properties
,”
Int. J. Plast.
0749-6419,
21
(
5
), pp.
883
914
.
18.
Lee
,
M. G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Chung
,
K.
, 2005, “
Springback Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Nonquadratic Anisotropic Yield Functions—Part III: Applications
,”
Int. J. Plast.
0749-6419,
21
(
5
), pp.
915
353
.
19.
Bui
,
Q. V.
,
Papeleux
,
L.
, and
Ponthot
,
J. P.
, 2004, “
Numerical Simulation of Springback Using Enhanced Assumed Strain Elements
,”
J. Mater. Process. Technol.
0924-0136,
153–154
, pp.
314
318
.
20.
Simo
,
J. C.
, and
Amero
,
F.
, 1992, “
Geometrically Nonlinear Enhanced Strain Mixed Methods and the Method of Compatible Modes
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
1413
1449
.
21.
Wenner
,
M. L.
, 1983, “
On the Work Hardening and Springback in Plane Strain Draw Forming
,”
Journal of Applied Metalworking
,
2
(
4
), pp.
342
349
.
22.
Zhang
,
J. T.
, and
Lee.
,
D.
, 1995, “
Development of New Model for Plane Strain Bending and Springback Analysis
,”
J. Mater. Eng. Perform.
1059-9495,
4
, pp.
291
300
.
23.
“NUMISHEET’93 Benchmark Problem,” 1993,
Proceedings of the 2nd International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes
,
A.
Makinouchi
,
E.
Nakamachi
,
E.
Onate
, and
R. H.
Wagoner
, eds., Isehara, Japan.
24.
Pouboghrat
,
F.
, and
Chu
,
E.
, 1995, “
Springback in Plane Strain Stretch∕Draw Sheet Forming
,”
Int. J. Mech. Sci.
0020-7403,
36
(
3
), pp.
327
341
.
25.
Pouboghrat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
, 1998, “
A Hybrid Membrane∕Shell Method for Rapid Estimation of Springback in Anisotropic Sheet Metals
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
671
684
.
26.
Yoon
,
J. W.
,
Pouboghrat
,
F.
,
Chung
,
K.
,
Yang
,
D.
, 2002, “
Springback Prediction for Sheet Metal Forming Process Using a 3D Hybrid Membrane∕Shell Method
,”
Int. J. Mech. Sci.
0020-7403,
44
(
10
), pp.
2133
2153
.
27.
Carden
,
W. D.
,
Geng
,
L. M.
,
Matlock
,
D. K.
, and
Wagoner
,
R. H.
, 2002, “
Measurement of Springback
,”
Int. J. Mech. Sci.
0020-7403,
44
(
1
), pp.
79
101
.
28.
Wang
,
J. F.
,
Wagoner
,
R. H.
,
Carden
,
W. D.
,
Matlock
,
D. K.
, and
Barlat
,
F.
, 2004, “
Creep and Anelasticity in the Springback of Aluminum
,”
Int. J. Plast.
0749-6419,
20
(
12
), pp.
2209
2232
.
29.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Choi
,
S. H.
,
Pouboghrat
,
F.
,
Chu
,
E.
, and
Lege
,
D. J.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets
,”
Int. J. Plast.
0749-6419,
19
(
9
), pp.
1297
1319
.
30.
Chaboche
,
J. L.
, 1986, “
Time Dependent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
0749-6419,
2
, pp.
149
188
.
31.
Chun
,
B. K.
,
Jinn
,
J. T.
, and
Lee
,
J. K.
, 2002, “
Modeling the Bauschinger Effect for Sheet Metals—Part I: Theory
,”
Int. J. Plast.
0749-6419,
18
(
5
), pp.
571
595
.
32.
Ohno
,
N.
, and
Wang
,
J. D.
, 1993, “
Nonlinear Hardening Rules with Critical State of Dynamics Recovery—Part 1: Formulation and Basic Features for Ratcheting Behavior
,”
Int. J. Plast.
0749-6419,
9
(
3
), pp.
375
390
.
33.
Ohno
,
N.
, and
Wang
,
J. D.
, 1993, “
Nonlinear Hardening Rules with Critical State of Dynamics Recovery—Part 2: Applications to Experiments of Ratcheting Behavior
,”
Int. J. Plast.
0749-6419,
9
(
3
), pp.
391
403
.
34.
Ohno
,
N.
, and
Katchi
,
Y.
, 1986, “
A Constitutive Model of Cyclic Plasticity for Nonlinear Hardening Materials
,”
ASME J. Appl. Mech.
0021-8936,
53
(
2
), pp.
395
403
.
35.
Bower
,
A. F.
, 1989, “
Cyclic Hardening Properties of Hard-Drawn Copper and Rail Steel
,”
J. Mech. Phys. Solids
0022-5096,
37
, pp.
455
470
.
36.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
, 1966, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” G.E.G.B. Report No. RD∕B∕N 731.
37.
Boger
,
R. K.
,
Wagoner
,
R. H.
,
Barlat
,
F.
,
Lee
,
M. G.
, and
Chung
,
K.
, 2005, “
Continuous, Large Strain, Tension∕Compression Testing of Sheet Material
,”
Int. J. Plast.
0749-6419,
21
, pp.
2319
2343
.
38.
Stoughton
,
T. B.
, 1988, “
Model of Drawbead Forces in Sheet Metal Forming
,”
Proceedings of the 15th IDDRG, Dearborn
, USA and Toronto, Canada, pp.
205
215
.
39.
Marciniak
,
Z.
, and
Duncan
,
J.
, 1992,
Mechanics of Sheet Metal Forming
,
Edward Arnolds
,
London, UK
.
40.
Wagoner
,
R. H.
,
Gan
,
W.
, and
Kovacs
,
W.
, 2005, “
Characterization of Friction-Stir Welds for Tailor-Welded Blank Applications
,” First year report for GM R&D Center.
41.
Lee
,
W.
,
Kim
,
J.
,
Ryou
,
H.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Chung
,
K.
, 2006, “
Numerical Sheet Forming Simulation of Friction Stir Welded TWB Automotive Sheets
,” Final Report for GM R&D Center.
42.
Wang
,
J. F.
,
Wagoner
,
R. H.
,
Matlock
,
D. K.
, and
Barlat
,
F.
, 2005, “
Anticlastic Curvature in Draw-Bend Springback
,”
Int. J. Solids Struct.
0020-7683,
42
(
12
), pp.
1287
1307
.
You do not currently have access to this content.