In this paper, fast Fourier transform and complex analysis are used to analyze the dynamic response of slabs on a viscoelastic foundation caused by a moving harmonic load. Critical speed and resonance frequency of the slab to a moving harmonic load are obtained analytically. It is proved that there exists a bifurcation in critical speed. One branch of critical speed increases as load frequency increases, while the other branch of critical speed decreases as load frequency increases. There are two critical speeds when the load frequency is low, but only one critical speed exists when the load frequency is high. A parametric study is also performed to study the effect of load speed, load frequency, material properties of the slab and the damping coefficient on dynamic response. It is found that the damping coefficient has significant influence on dynamic response. For small damping, the maximum response of the slab increases with increased load speed and frequency. However, for large damping, the maximum response of the slab decreases with increased load speed and frequency.

1.
Yoder
,
E. J.
, and
Witczak
,
M. W.
, 1975,
Principles of Pavement Design
,
John Wiley & Sons, Inc.
,
NY
.
2.
Haas
,
R.
,
Hudson
,
W. R.
, and
Zniewski
,
J.
, 1994,
Modern Pavement Management
,
Krieger Publishing Company
,
Malabar, FL
.
3.
Sun
,
L.
, and
Deng
,
X.
, 1998, “
Predicting Vertical Dynamic Loads Caused by Vehicle-Pavement Interaction
,”
J. Transp. Eng.
0733-947X,
126
, pp.
470
478
.
4.
Sun
,
L.
, 2002, “
Optimum Design of ‘Road-Friendly’ Vehicle Suspension Systems Subject to Rough Road Surface
,”
Appl. Math. Model.
0307-904X,
26
, pp.
635
652
.
5.
Sun
,
L.
,
Zhang
,
Z.
, and
Ruth
,
J.
, 2001, “
Modeling Indirect Statistics of Surface Roughness
,”
J. Transp. Eng.
0733-947X,
127
, pp.
105
111
.
6.
Sun
,
L.
,
Hudson
,
W. R.
, and
Zhang
,
Z.
, 2003, “
Empirical-Mechanistic Method Based Stochastic Modeling of Fatigue Damage to Predict Flexible Pavement Fatigue Cracking for Transportation Infrastructure Management
,”
J. Transp. Eng.
0733-947X,
129
, pp.
109
117
.
7.
Sun
,
L.
,
Kenis
,
W.
, and
Wang
,
W.
, 2006, “
Stochastic Spatial Excitation Induced by a Distributed Contact With Homogenous Gaussian Random Fields
,”
J. Eng. Mech.
0733-9399,
132
, pp.
714
722
.
8.
Monismith
,
C. L.
,
Sousa
,
J.
, and
Lysmer
,
J.
, 1988, “
Modern Pavement Design Technology Including Dynamic Load Conditions
,” SAE Technical Paper, No. 881856.
9.
Sun
,
L.
, 2001, “
Closed-Form Representation of Beam Response to Moving Line Loads
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
348
350
.
10.
Sun
,
L.
, 2002, “
A Closed-Form Solution of Beam on Viscoelastic Subgrade Subjected to Moving Loads
,”
Comput. Struct.
0045-7949,
80
, pp.
1
8
.
11.
Sun
,
L.
, 2005, “
Analytical Dynamic Displacement Response of Rigid Pavements to Moving Concentrated and Line Loads
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
4370
4383
.
12.
Sun
,
L.
, 2005, “
Dynamics of Plate Generated by Moving Harmonic Loads
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
772
777
.
13.
Kim
,
S. M.
, and
Roesset
,
J. M.
, 1996, “
Dynamic Response of Pavement Systems to Moving Loads
,” Center for Transportation Research,
The University of Texas at Austin
, Research Report No. 1422-2.
14.
Kononov
,
A. V.
, and
Dieterman
,
H. A.
, 1999, “
A Uniformly Moving Constant Load Along a Winkler Supported Strip
,”
Eur. J. Mech. A/Solids
0997-7538,
18
(
4
), pp.
731
743
.
15.
Chen
,
Y. H.
, and
Huang
,
Y. H.
, 2000, “
Dynamic Stiffness of Infinite Timoshenko Beam on Viscoelastic Foundation in Moving Coordinate
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
1
18
.
16.
Chen
,
Y. H.
,
Huang
,
Y. H.
, and
Shih
,
C. T.
, 2001, “
Response of an Infinite Timoshenko Beam on a Viscoelastic Foundation to a Harmonic Moving Load
,”
J. Sound Vib.
0022-460X,
241
(
5
), pp.
809
824
.
17.
Clouteau
,
D.
,
Degrande
,
G.
, and
Lombaert
,
G.
, 2001, “
Numerical Modelling of Traffic Induced Vibrations
,”
Meccanica
0025-6455,
36
(
4
), pp.
401
420
.
18.
Shamalta
,
M.
, and
Metrikine
,
A. V.
, 2003, “
Analytical Study of the Dynamic Response of an Embedded Railway Track to a Moving Load
,”
Arch. Appl. Mech.
0939-1533,
73
(
1-2
), pp.
131
146
.
19.
Bush
,
A. J.
, 1980, “
Nondestructive Testing for Light Aircraft Pavements, Phase II
,”
Development of the nondestructive evaluation methodology
, Final Report FAA No. RD-80-9, Federal Aviation Administration.
20.
Scullion
,
T.
,
Uzan
,
J.
, and
Paredes
,
M.
, 1990, “
MODULUS: A Microcomputerbased Backcalculation System
,” Transp. Res. Rec., No. 1260.
21.
Uzan
,
J.
, and
Lytton
,
R.
, 1990, “
Analysis of Pressure Distribution Under Falling Weight Deflectometer Loading
,”
J. Transp. Eng.
0733-947X,
116
, pp.
246
250
.
22.
Salawu
,
O. S.
, and
Williams
,
C.
, 1995, “
Full-Scale Force-Vibration Test Conducted Before and After Structural Repairs on Bridge
,”
J. Struct. Eng.
0733-9445,
121
(
2
), pp.
161
173
.
23.
Sun
,
L.
, and
Kennedy
,
T. W.
, 2002, “
Spectral Analysis and Parametric Study of Stochastic Pavement Loads
,”
J. Eng. Mech.
0733-9399,
128
, pp.
318
327
.
24.
Lee
,
J. L. Y.
,
Stokoe
,
K. H.
II
,
Murphy
,
M. R.
, and
Rozycki
,
D. K.
, 2002, “
Application of the Rolling Dynamic Deflectometer to Project-Level Pavement Studies
,”
81st Annual Meeting, Transportation Research Board
, Washington, DC.
25.
Sun
,
L.
, and
Greenberg
,
B.
, 2000, “
Dynamic Response of Linear Systems to Moving Stochastic Sources
,”
J. Sound Vib.
0022-460X,
229
(
4
), pp.
957
972
.
26.
Kenney
,
J. T.
, 1954, “
Steady-State Vibrations of Beam on Elastic Foundation for Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
20
, pp.
359
364
.
27.
Taheri
,
M. R.
, 1986, “
Dynamic Response of Slabs to Moving Loads
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
28.
Kukreti
,
A. R.
,
Taheri
,
M.
, and
Ledesma
,
R. H.
, 1992, “
Dynamic Analysis of Rigid Airport Pavements With Discontinuities
,”
J. Transp. Eng.
0733-947X,
118
(
3
), pp.
341
360
.
29.
Zaghloul
,
S. M.
,
White
,
T. D.
,
Drnevich
,
V. P.
, and
Coree
,
B.
, 1994, “
Dynamic Analysis of FWD Loading and Pavement Response Using a Three-Dimensional Dynamic Finite Element Program
,” Transp. Res. Board, Washington, DC.
30.
Sun
,
L.
, 2003, “
An Explicit Representation of Steady State Response of a Beam Resting on an Elastic Foundation to Moving Harmonic Line Loads
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
27
, pp.
69
84
.
31.
Sun
,
L.
, 2001, “
Computer Simulation and Field Measurement of Dynamic Pavement Loading
,”
Math. Comput. Simul.
0378-4754,
56
, pp.
297
313
.
32.
Deshun
,
Z.
, 1999, “
A Dynamic Model for Thick Elastic Slabs
,”
J. Sound Vib.
0022-460X,
221
(
2
), pp.
187
203
.
33.
Bo
,
J.
, 1999, “
The Vertical Vibration of an Elastic Circular Slab on a Fluid-Saturated Porous Half Space
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
379
393
.
34.
Sun
,
L.
, 2003, “
Dynamic Response of Kirchhoff Slab on a Viscoelastic Foundation to Harmonic Circular Loads
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
595
600
.
35.
Watson
,
G. N.
, 1966,
A Treatise on the Theory of Bessel Functions
, 2nd ed.,
Cambridge University Press
,
London
.
36.
Zhu
,
Z.
,
Wang
,
B.
, and
Guo
,
D.
, 1984,
Pavement Mechanics
,
Renming Jiaotong Pub. Inc.
,
Beijing, China
.
37.
Chen
,
Y. H.
, and
Huang
,
Y. H.
, 2003, “
Dynamic Characteristics of Infinite and Finite Railways to Moving Loads
,”
J. Eng. Mech.
0733-9399,
129
(
9
), pp.
987
995
.
38.
Dieterman
,
H. A.
, and
Metrikine
,
A.
, 1997, “
Critical Velocities of a Harmonic Load Moving Uniformly Along an Elastic Layer
,”
ASME J. Appl. Mech.
0021-8936,
64
(
3
), pp.
596
600
.
39.
Henrici
,
P.
, 1974,
Applied and Computational Complex Analysis
, Vol.
1
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.