Abstract
In this study, we derive an analytical solution describing the magnetohydrodynamic boundary layer flow of a second grade fluid over a shrinking sheet. Both exact and series solutions have been determined. For the series solution, the governing nonlinear problem is solved using the homotopy analysis method. The convergence of the obtained solution is analyzed explicitly. Graphical results have been presented and discussed for the pertinent parameters.
Issue Section:
Technical Papers
References
1.
Khan
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
,
2006, “Exact Solution
for MHD Flow of a Generalized Oldroyd-B Fluid with Modified Darcy’s
Law
,” Int. J. Eng. Sci.
0020-7225, 44
, pp.
333
–339
.2.
Fetecau
,
C.
, and
Fetecau
,
C.
,
2005, “On Some Axial
Couette Flows of a Non-Newtonian Fluid
,”
ZAMP
0044-2275, 56
, pp.
1098
–1106
.3.
Fetecau
,
C.
, and
Fetecau
,
C.
,
2006, “Starting
Solutions for the Motion of a Second Grade Fluid due to Longitudinal and
Torsional Oscillations of a Circular Cylinder
,” Int.
J. Eng. Sci.
0020-7225, 44
, pp.
788
–796
.4.
Fetecau
,
C.
, and
Fetecau
,
C.
,
2005, “Decay of a
Potential Vortex in an Oldroyd-B Fluid
,” Int. J.
Eng. Sci.
0020-7225, 43
, pp.
430
–351
.5.
Fetecau
,
C.
, and
Fetecau
,
C.
,
2005, “Starting
Solutions for Some Unsteady Unidirectional Flows of a Second Grade
Fluid
,” Int. J. Eng. Sci.
0020-7225, 43
, pp.
781
–789
.6.
Hayat
,
T.
, and
Kara
, A.
H.
, 2006,
“Couette Flow of a Third Grade Fluid with Variable Magnetic
Field
,” Math. Comput. Modell.
0895-7177, 43
, pp.
132
–137
.7.
Hayat
,
T.
,
2005, “Oscillatory
Solution in Rotating Flow of a Johnson–Segalman Fluid
,”
Z. Angew. Math. Mech.
0044-2267,
85
, pp.
449
–456
.8.
Tan
, W.
C.
, and Masuoka
,
T.
,
2005, “Stokes First
Problem for an Oldroyd-B Fluid in a Porous Half Space
,”
Phys. Fluids
1070-6631,
17
, pp. 023101
.9.
Chen
, C.
I.
, Chen
, C.
K.
, and Yang
, Y.
T.
, 2004,
“Unsteady Unidirectional Flow of an Oldroyd-B Fluid in a
Circular Duct with Different Given Volume Flow Rate
Conditions
,” Heat Mass Transfer
0947-7411, 40
, pp.
203
–209
.10.
Tan
, W.
C.
, and Masuoka
,
T.
,
2005, “Stokes First
Poroblem for Second Grade Fluid in a Porous Half Space
,”
Int. J. Non-Linear Mech.
0020-7462, 40
, pp.
515
–522
.11.
Sakiadis
, B.
C.
, 1961,
“Boundary Layer Behaviour on Continuous Solid
Surfaces
,” AIChE J.
0001-1541,
7
, pp.
26
–28
.12.
Sakiadis
, B.
C.
, 1961,
“Boundary Layer Behaviour on Continuous Solid Surfaces: II.
The Boundary Layer on a Continuous Flat Surface
,”
AIChE J.
0001-1541,
17
, pp.
221
–225
.13.
Cortell
,
R.
,
2006, “Effects of
Viscous Dissipation and Work Done by Deformation on the MHD Flow and Heat
Transfer of a Viscoelastic Fluid over a Stretching Sheet
,”
Phys. Lett. A
0375-9601, 357
, pp.
298
–305
.14.
Cortell
,
R.
,
2005, “Flow and Heat
Transfer of a Fluid Through a Porous Medium over a Stretching Surface with
Internal Heat Generation/Absorption and Suction/Blowing
,”
Fluid Dyn. Res.
0169-5983, 37
, pp.
231
–245
.15.
Cortell
,
R.
,
2006, “A Note on Flow
and Heat Transfer of a Viscoelastic Fluid over a Stretching
Sheet
,” Int. J. Non-Linear Mech.
0020-7462, 41
, pp.
78
–85
.16.
Sadeghy
,
K.
,
Najafi
, A.
H.
, and Saffaripour
,
M.
,
2005, “Sakiadis Flow of
an Upper-Convected Maxwell Fluid
,” Int. J.
Non-Linear Mech.
0020-7462, 40
, pp.
1220
–1228
.17.
Hayat
,
T.
,
Abbas
,
Z.
, and
Sajid
,
M.
,
2006, “Series Solution
for the Upper-Convected Maxwell Fluid over a Porous Stretching
Plate
,” Phys. Lett. A
0375-9601, 358
, pp.
396
–403
.18.
Hayat
,
T.
, and
Sajid
,
M.
,
2007, “Analytic Solution
for Axisymmetric Flow and Heat Transfer of a Second Grade Fluid Past a
Stretching Sheet
, Int. J. Heat Mass
Transfer
0017-9310, 50
, pp.
75
–84
.19.
Liao
,
S.
,
2003, “On the Analytic
Solution of Magnetohydrodynamic Flows of Non-Newtonian Fluids over a
Stretching Sheet
,” J. Fluid Mech.
0022-1120, 488
, pp.
189
–212
.20.
Xu
,
H.
,
2005, “An Explicit
Analytic Solution for Convective Heat Transfer in an Electrically Conducting
Fluid at a Stretching Surface with Uniform Free Stream
,”
Int. J. Eng. Sci.
0020-7225, 43
, pp.
859
–874
.21.
Liu
, I.
C.
, 2005,
“Flow and Heat Transfer of an Electrically Conducting Fluid
of a Second Grade in a Porous Medium over a Stretching Sheet Subject to a
Transverse Magnetic Field
,” Int. J. Non-Linear
Mech.
0020-7462, 40
, pp.
465
–474
.22.
Yürüsoy
,
M.
,
2006, “Unsteady Boundary
Layer Flow of Power-Law Fluid on Stretching Sheet Surface
,”
Int. J. Eng. Sci.
0020-7225, 44
, pp.
325
–332
.23.
Wang
, C.
Y.
, 1990,
“Liquid Film on an Unsteady Stretching
Sheet
,” Q. Appl. Math.
0033-569X, 48
, pp.
601
–610
.24.
Miklavcic
,
M.
, and
Wang
, C.
Y.
, 2006,
“Viscous Flow due to a Shrinking Sheet
,”
Q. Appl. Math.
0033-569X, 64
, pp.
283
–290
.25.
Liao
, S.
J.
, 2003,
Beyond Perturbation: Introduction to Homotopy Analysis
Method
, Chapman & Hall/CRC
,
Boca Raton, FL.26.
Liao
, S.
J.
, 2004,
“On the Homotopy Analysis Method for Nonlinear
Problems
,” Appl. Math. Comput.
0096-3003, 147
, pp.
499
–513
.27.
Liao
, S.
J.
, 1999,
“A Uniformly Valid Analytic Solution of 2D Viscous Flow Past
a Semi-infinite Flat Plate
,” J. Fluid Mech.
0022-1120, 385
, pp.
101
–128
.28.
Liao
, S.
J.
, and Cheung
, K.
F.
, 2003,
“Homotopy Analysis of Nonlinear Progressive Waves in Deep
Water
,” J. Eng. Math.
0022-0833, 45
, pp.
105
–116
.29.
Liao
, S.
J.
, 2006,
“An Analytic Solution of Unsteady Boundary-Layer Flows Caused
by an Impulsively Stretching Plate
,” Commun.
Nonlinear Sci. Numer. Simul.
1007-5704, 11
, pp.
326
–339
.30.
Liao
, S.
J.
, 2005,
“Comparison between the Homotopy Analysis Method and Homotopy
Perturbation Method
,” Appl. Math. Comput.
0096-3003, 169
, pp.
1186
–1194
.31.
Abbasbandy
,
S.
,
2006, “The Application
of Homotopy Analysis Method to Nonlinear Equations Arising in Heat
Transfer
,” Phys. Lett. A
0375-9601, 360
, pp.
109
–113
.32.
Tan
,
Y.
, and
Abbasbandy
,
S.
,
2007, “Homotopy Analysis
Method for Quadratic Recati Differential Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704, in press. 33.
Zhu
, S.
P.
, 2006,
“An Exact and Explicit Solution for the Valuation of American
Put Options
,” Quant. Finance
1469-7688, 6
, pp.
229
–242
.34.
Zhu
, S.
P.
, 2006,
“A Closed-Form Analytical Solution for the Valuation of
Convertible Bonds with Constant Dividend Yield
,”
ANZIAM J.
1446-1811, 47
, pp.
477
–494
. 35.
Wu
,
Y.
,
Wang
,
C.
, and
Liao
, S.
J.
, 2005,
“Solving Solitary Waves with Discontinuity by Means of the
Homotopy Analysis Method
,” Chaos, Solitons
Fractals
0960-0779, 26
, pp.
177
–185
.36.
Hayat
,
T.
,
Khan
,
M.
, and
Ayub
,
M.
,
2004, “On the Explicit
Analytic Solutions of an Oldroyd 6-Constant Fluid
,”
Int. J. Eng. Sci.
0020-7225, 42
, pp.
123
–135
. 37.
Hayat
,
T.
,
Khan
,
M.
, and
Asghar
,
S.
,
2004, “Homotopy Analysis
of MHD Flows of an Oldroyd 8-Constant Fluid
,” Acta
Mech.
0001-5970, 168
, pp.
213
–232
.38.
Sajid
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
,
2006, “On the Analytic
Solution of Steady Flow of a Fourth Grade Fluid
,”
Phys. Lett. A
0375-9601, 355
, pp.
18
–24
.39.
Abbas
,
Z.
,
Sajid
,
M.
, and
Hayat
,
T.
,
2006, “MHD Boundary
Layer Flow of an Upper-Convected Maxwell Fluid in Porous
Channel
,” Theor. Comput. Fluid Dyn.
0935-4964, 20
, pp.
229
–238
.40.
Hayat
,
T.
,
Abbas
,
Z.
,
Sajid
,
M.
, and
Asghar
,
S.
,
2007, “The Influence of
Thermal Radiation on MHD Flow of a Second Grade Fluid
,”
Int. J. Heat Mass Transfer
0017-9310, 50
, pp.
931
–941
.41.
Sajid
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
,
2007, “Comparison of the
HAM and HPM Solutions of Thin Film Flows of Non-Newtonian Fluids on a Moving
Belt
,” Nonlinear Dyn.
0924-090X, in press.42.
Hayat
,
T.
, and
Sajid
,
M.
,
2007, “On Analytic
Solution for Thin Film Flow of a Fourth Grade Fluid Down a Vertical
Cylinder
,” Phys. Lett. A
0375-9601, 361
, pp.
316
–322
.43.
Shercliff
, J.
A.
, 1965,
A Text Book of Magnetohydrodynamics
,
Pergamon
, Elmsford, New
York.44.
Nanousis
, N.
D.
, 1999,
“Theoretical Magnetohydrodynamic Analysis of Mixed Convection
Boundary Layer Flow Over a Wedge with Uniform Suction or
Injection
,” Acta Mech.
0001-5970,
138
, pp.
21
–30
.45.
Vajravelu
,
K.
, and
Rivera
,
J.
,
2003, “Hydromagnetic
Flow at an Oscillating Plate
,” Int. J. Non-Linear
Mech.
0020-7462, 38
, pp.
305
–312
.46.
Hayat
,
T.
,
Zumurad
,
M.
,
Asghar
,
S.
, and
Siddiqui
, A.
M.
, 2003,
“Magnetohydrodynamic Flow due to Non-coaxial Rotations of a
Porous Oscillating Disk and a Fluid at Infinity
,”
Int. J. Eng. Sci.
0020-7225, 41
, pp.
1177
–1196
.47.
Tokis
, J.
N.
, 1978,
“Hydromagnetic Unsteady Flow due to an Unsteady
Plate
,” Astrophys. Space Sci.
0004-640X,
58
, pp.
167
–174
.48.
Pop
,
I.
,
Kumari
,
M.
, and
Nath
,
G.
,
1994, “Conjugate MHD
Flow Past a Flat Plate
,” Acta Mech.
0001-5970,
106
, pp.
215
–220
.49.
Abel
,
S.
,
Veena
, P.
H.
, Rajagopal
,
K.
, and
Pravin
, V.
K.
, 2004,
“Non-Newtonian Magnetohydrodynamic Flow over a Stretching
Surface with Heat and Mass Transfer
, Int. J.
Non-Linear Mech.
0020-7462, 39
, pp.
1067
–1078
.50.
Garg
, V.
K.
, and Rajagopal
,
K. R.
, 1991,
“Flow of a Non-Newtonian Fluid Past a Wedge
,”
Acta Mech.
0001-5970,
88
, pp.
113
–123
.51.
Vajravelu
,
K.
, and
Roper
,
T.
,
1999, “Flow and Heat
Transfer in a Second Grade Fluid over a Stretching Sheet
,”
Int. J. Non-Linear Mech.
0020-7462, 34
, pp.
1031
–1036
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.