Abstract
We show, by considering a special class of nonlinear viscoelastic materials, that consistency of a mechanical model with classical linear viscoelasticity, may be a fundamental condition to ensure a mathematical and physical well-posedness behavior. To illustrate our arguments we use a rectilinear class of shear motions that we investigate in the static and quasistatic case in the framework of a simple boundary value problem and the classical recovery phenomenon.
Issue Section:
Technical
Papers
1.
Truesdell
, C.
, and Noll
, W.
, 2004, The Non-Linear Field Theories of Mechanics
, 3rd ed., Springer-Verlag
, Berlin.2.
Beatty
, M. F.
, 1996, “Introduction to Nonlinear Elasticity
,” in Nonlinear Effects in Fluids and Solids
, M. M.
Carroll
and M. A.
Hayes
, eds., Plenum Press
, New York, pp. 16
–112
.3.
Weinberger
, H. F.
, 1965, A First Course in Partial Differential Equations
, Waltham
, Blaisdell.4.
Antman
, S. S.
, 1995, Nonlinear Problems of Elasticity
, Springer-Verlag
, New York.5.
Takamizawa
, K.
, and Hayashi
, K.
, 1987, “Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,” J. Biomech.
0021-9290, 20
, pp. 7
–17
.6.
Horgan
, C. O.
, and Saccomandi
, G.
, 2003, “A Description of Arterial Wall Mechanics Using Limiting Chain Extensibility Constitutive Models
,” Biomech. Modeling in Mechanobiology
, 1
, pp. 251
–266
.7.
Gasser
, T. C.
, Ogden
, R. W.
, and Holzapfel
, G. A.
, 2006, “Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fibre Orientations
,” J. R. Soc., Interface
1742-5689, 3
, pp. 15
–35
.8.
Pioletti
, D. P.
, Rakotomanana
, L. R.
, Benvenuti
, J.-F.
, and Leyvraz
, P.-F.
, 1998, “Viscoelastic Constitutive Law in Large Deformations: Application to Human Knee Ligaments and Tendons
,” J. Biomech.
0021-9290, 31
, pp. 753
–757
.9.
Zhang
, J. P.
, and Rajagopal
, K. R.
, 1992, “Some Inhomogeneous Motions and Deformations Within the Context of a Non Linear Elastic Solid
,” Int. J. Eng. Sci.
0020-7225, 30
, pp. 919
–938
.10.
Pucci
, E.
, and Saccomandi
, G.
, 1999, “Some Remarks on the Gent Model of Rubber Elasticity
,” CanCNSM Proceedings
, E. M.
Croitoro
, ed., University of Victoria Press
, Victoria, Canada, pp. 163
–172
.11.
Bailey
, P. B.
, Shampine
, L. F.
, and Waltman
, P. A.
, 1968, Nonlinear Two Point Boundary Value Problems
, Academic Press
, New York.12.
Horgan
, C. O.
, Saccomandi
, G.
, and Sgura
, I.
, 2003, “A Two-Point Boundary Value Problem for the Axial Shear of Hardening Isotropic Incompressible Nonlinearly Elastic Materials
,” SIAM J. Appl. Math.
0036-1399, 65
, pp. 1712
–1727
.13.
Serrin
, J.
, 1969, “The Problem of Dirichlet for Quasilinear Elliptic Differential Equations with Many Independent Variables
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 264
, pp. 413
–496
.14.
MacCamy
, R. C.
, 1970, “Existence, Uniqueness and Stability of Solutions of the Equation utt=∂∕∂x(σ(ux)+λ(ux)uxt)
,” Indiana Univ. Math. J.
0022-2518, 20
, pp. 231
–238
.15.
Georgiev
, V.
, Rubino
, B.
, and Sampalmieri
, R.
, 2005, “Global Existence for Elastic Waves with Memory
,” Arch. Ration. Mech. Anal.
0003-9527, 176
, pp. 303
–330
.16.
Ciarlet
, P. G.
, 1988, Mathematical Elasticity: Vol. 1
, North Holland, Amsterdam.17.
Nicholson
, D. W.
, 2003, Finite Element Analysis: Thermomechanics of Solids
, CRC Press
, Boca Raton, FL.Copyright © 2007
by American Society of Meachanical Engineers
You do not currently have access to this content.