The objective of this paper is to extend the framework of the continuum theory so that it can capture the properties that are embedded in the microstructure or nanostructure and still keep its simplicity and efficiency. The model thus developed is capable of accounting for local deformation of microstructures in solids especially their micro- (local) inertia effect. The essence underlying this approach is the introduction of a set of bridging functions that relate the local deformation of microstructures to the macrokinematic variables. Once the solution of the macroscopically homogeneous continuum is obtained, the solutions in the microstructures are obtained through the use of these bridging functions. Propagation of waves of different wavelengths is considered and the dispersion curve is used to evaluate the accuracy of the model. The model is also employed to study wave reflection and transmission at the boundary of two media with microstructures of very different scales.

1.
Cosserat
,
E.
, and
Cosserat
,
F.
, 1909,
Theorie des Corps Deformables
,
A. Hermann & Fils
,
Paris
.
2.
Toupin
,
R. A.
, 1962, ”
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
0003-9527,
11
, pp.
385
414
.
3.
Mindlin
,
R. D.
, 1964, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
16
, pp.
51
78
.
4.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
, 1964, “
Nonlinear Theory of Micro-Elastic Solids
,”
Int. J. Eng. Sci.
0020-7225,
2
, pp.
189
203
.
5.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
, 1968, “
Continuum Theory for a Laminated Medium
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
467
475
.
6.
Achenbach
,
J. D.
,
Sun
,
C. T.
, and
Herrmann
,
G.
, 1968, “
On the Vibrations of a Laminated Body
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
689
696
.
7.
Chen
,
Y. P.
, and
Lee
,
J. D.
, 2003, “
Connecting Molecular Dynamics to Micromorphic Theory. (I). Instantaneous and Averaged Mechanical Variables
,”
Physica A
0378-4371,
322
, pp.
359
376
.
8.
Kunin
,
I. A.
, 1982,
Elastic Media with Microstructure I, One Dimensional Models
,
Springer-Verlag
,
Berlin
.
9.
Pasternak
,
E.
, and
Muhlhaus
,
H. B.
, 2005, “
Generalised Homogenisation Procedures for Granular Materials
,”
J. Eng. Math.
0022-0833,
52
, pp.
199
229
.
10.
Nesterenko
,
V. F.
, 2001,
Dynamics of Heterogeneous Materials
,
Springer-Verlag
,
New York
.
11.
Wang
,
Z. P.
, and
Sun
,
C. T.
, 2002, “
Modeling Micro-Inertia in Heterogeneous Materials under Dynamic Loading
,”
Wave Motion
0165-2125,
36
, pp.
473
485
.
12.
Sinclair
,
J.
, 1971, “
Improved Atomistic Model of a bcc Dislocation Core
,”
J. Appl. Phys.
0021-8979,
42
, pp.
5321
5329
.
13.
Mullins
,
M.
, and
Dokainish
,
M. A.
, 1982, “
Simulation of the (0 0 1) Plane Crack in a-Iron Employing a New Boundary Scheme
,”
Philos. Mag. A
0141-8610,
46
, pp.
771
787
.
14.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
, 1996, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
0141-8610,
73
, pp.
1529
1563
.
15.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
0163-1829,
60
, pp.
2391
2403
.
16.
Rudd
,
R. E.
, and
Broughton
,
J. Q.
, 2000, “
Concurrent Coupling of Length Scales in Solid State Systems
,”
Phys. Status Solidi B
0370-1972,
217
, pp.
251
291
.
17.
E
,
W. N.
, and
Huang
,
Z. Y.
, 2001, “
Matching Conditions in Atomistic-Continuum Modeling of Materials
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
135501
.
18.
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2003, “
Coupling of Atomic and Continuum Simulations using a Bridging Scale Decomposition
,”
J. Comput. Phys.
0021-9991,
190
, pp.
249
274
.
19.
Xiao
,
S. P.
, and
Belytschko
,
T.
, 2004, “
Coupling Methods for Continuum Model With Molecular Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1645
1669
.
20.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
, 1950, “
The Statistical Mechanical Theory of Transport Processes
,”
J. Chem. Phys.
0021-9606,
18
, pp.
817
829
.
21.
Lutsko
,
J. F.
, 1988, “
Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamic Techniques
,”
J. Appl. Phys.
0021-8979,
64
, pp.
1152
1164
.
22.
Cormier
,
J.
,
Rickman
,
J. M.
, and
Delph
,
T. J.
, 2001, “
Stress Calculation in Atomistic Simulations of Perfect and Imperfect Solids
,”
J. Appl. Phys.
0021-8979,
89
, pp.
99
104
.
23.
Zhou
,
M.
, 2003, “
A New Look at the Atomic Level Virial Stress: on Continuum-Molecular System Equivalence
,”
Proc. R. Soc. London, Ser. A
1364-5021,
459
, pp.
2347
2392
.
You do not currently have access to this content.