Mixture formation and combustion in a gasoline direct injection (GDI) engine were studied. A swirl-type nozzle, with an inwardly opening pintle, was used to inject the fuel directly in a four stroke, four cylinder, four valves per cylinder engine. The atomization of the hollow cone fuel spray was modeled by using a hybrid approach. The most important obstacle in the development of GDI engines is that the control of the stratified-charge combustion over the entire operating range is very difficult. Since the location of the ignition source is fixed in SI engines the mixture cloud must be controlled both temporally and spatially for a wide range of operating conditions. Results show that the volume of the spark must be considered when discretizing the computational domain because it highly influences the flow field in the combustion chamber. This is because the volume occupied by the plug cannot be neglected since it is much bigger than the ones used in port fuel injection engines. The development of a successful combustion system depends on the design of the fuel injection system and the matching with the in-cylinder flow field: the stratification at part load appears to be the most crucial and critical step, and if the air motion is not well coupled with the fuel spray it would lead to an increase of unburned hydrocarbon emission and fuel consumption

1.
Zhao
,
F. F.
,
Harrington
,
D. L.
, and
Lai
,
M. C.
, 2002,
Automotive Gasoline Direct-Injection Engines
, SAE.
2.
Zhao
,
F. Q.
,
Lai
,
M. C.
, and
Harrington
,
D. L.
, 1997, “
A Review of Mixture Preparation and Combustion Strategies for Spark-Ignited Direct Injection Gasoline Engine
,” SAE, Paper No. 970627.
3.
Nu
,
M. I. D. I. A.
, 2003, private communications.
4.
Amsden
,
A. A.
,
Ramshaw
,
J. D.
,
O’Rourke
,
P. J.
, and
Dukowicz
,
J. K.
, 1993, “
A Computer Program for Two and Three Dimensional Fluid Flows With Chemical Reaction and Fuel Spray
,” Los Alamos Labs., LS 12503 MS.
5.
Amsden
,
A.
, 1993, “
KIVA-3: A KIVA Program With Block-Structured Mesh for Complex Geometries
,” Los Alamos National Laboratory.
6.
Alessandri
,
M.
, 2000, “
Simulazione Della Fase di Ricambio Della Carica in un Motore Benzina ad Iniezione Diretta
,” Tesi di Laurea Università di “Tor Vergata.”
7.
Nagaoka
,
M.
, and
Kawamura
,
K.
, 2001, “
A Deforming Droplet Model for Fuel Spray in Direct-Injection Gasoline Engines
,” SAE Paper No. 2001-01-1225.
8.
Dombrowski
,
N.
,
Hasson
,
D.
, and
Ward
,
D.
, 1960, “
Some Aspects of Liquid Flow Through Fan Spray Nozzles
,”
Chem. Eng. Sci.
0009-2509,
12
, pp.
35
50
.
9.
Dombrowski
,
N.
, and
Johns
,
D.
, 1963, “
The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets
,”
Chem. Eng. Sci.
0009-2509,
18
, pp.
203
214
.
10.
Ohnesorge
,
W.
, 1936, “
Formation of Drops by Nozzles and the Breakup of Liquid Jets
,”
Z. Angew. Math. Mech.
0044-2267,
16
, pp.
355
358
.
11.
Sauter
,
J.
, 1926, “
Determining Size of Drops in Fuel Mixture of Internal Combustion Engines
,” NACA TM 390.
12.
Han
,
Z.
,
Parrish
,
S.
,
Farrel
,
P. V.
, and
Reitz
,
R. D.
, 1997, “
Modeling Atomization Processes of Pressure Swirl Hollow-Cone Fuel Sprays
,”
Atomization Sprays
1044-5110,
7
, pp.
663
684
.
13.
Hayakawa
,
M.
,
Takada
,
S.
,
Yonesige
,
K.
,
Nagaoka
,
M.
, and
Takeda
,
K.
, 2002, “
Fuel Spray Simulation of a Slit Nozzle Injector for Direct-Injection Gasoline Engine
,” SAE Paper No. 2002-01-1135.
14.
Beccaria
,
M.
,
Bella
,
G.
, and
Lanzafame
,
R.
, 2003, “
Simulazione Fluidodinamica di uno Spray di Combustibile per Motori ad Accensione Comandata GDI
,” ATI.
15.
Rotondi
,
R.
,
Bella
,
G.
,
Grimaldi
,
C.
, and
Postrioti
,
L.
, 2001, “
Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model
,” SAE Paper No. 2001-01-1070.
16.
Giffen
,
E.
, and
Muraszew
,
A.
,
The Atomisation of Liquid Fuels
,
Chapman & Hall
,
London
.
17.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1987, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Paper No. 872089.
18.
Ibrahim
,
E. A.
,
Yang
,
H. Q.
, and
Przekwas
,
A. J.
, 1993, “
Modeling of Spray Droplets Deformation and Breakup
,”
J. Propul. Power
0748-4658,
9
, pp.
651
654
.
19.
Reitz
,
R. D.
, 1996, “
Computer Modeling of Sprays
,” Spray Technology Short Course, Pittsburgh, PA, May.
20.
Bella
,
G.
,
Rotondi
,
R.
,
Corcione
,
F. E.
, and
Valentino
,
G.
, 1999, “
Experimental and Computational Analysis of a Diesel Spray
,”
4th International Conference ICE99
, Internal Combustion Engines: Experiments and Modeling, Capri.
21.
Devita
,
A.
,
Alaggio
,
M.
, and
Rotondi
,
R.
, 2000, “
Experimental and Numerical Studies of Diesel Fuel and Biodiesel Spray
,” ASME Technical Paper No. 2000-ICE-333.
22.
Abraham
,
J.
,
Bracco
,
F. V.
, and
Reitz
,
R. D.
, 1985, “
Comparison of Computed and Measured Premixed Charge Engine Combustion
,”
Combust. Flame
0010-2180,
60
, pp
309
322
.
23.
Reitz
,
R. D.
, and
Kuo
,
T. W.
, 1989, “
Modelling of HC Emissions Due to Crevice Flows in Premixed Charge Engines
,” SAE Paper No. 892085.
24.
Heywood
,
J. B.
, 1995,
Internal Combustion Engine Fundamentals
,
Mc-Graw Hill Book Co.
,
New York
.
25.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
, 1971,
16th Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, pp
649
657
.
26.
Reitz
,
R. D.
, 1991, “
Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computations
,” SAE Paper No. 910267.
27.
Song
,
J.
, and
Sunwoo
,
M.
, 2000, “
A Modeling and Experimental Study of Initial Flame Kernel Developement and Propagation in SI Engines
,” SAE Paper No. 2000-01-0960R.
28.
Herweg
,
R.
, and
Maly
,
R. R.
, 1992, “
A Fundamental Model for a Flame Kernel Formation in S.I. Engines
,” SAE Paper No. 922243.
29.
Fan
,
L.
,
Li
,
G.
,
Fan
,
Z.
, and
Reitz
,
R. D.
, 1999, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,” SAE Paper No. 1999-01-0175.
You do not currently have access to this content.