We consider a method to compute the vibration modes of an elastic thin structure (shell or plate) in contact with a compressible fluid. For the structure, the classical Naghdi equations, based on the Reissner–Mindlin hypothesis, are considered and its approximation using the mixed interpolation of tensorial component 4 finite element method. The fluid equations are discretized by using Raviart–Thomas elements, and a non-conforming coupling is used on the fluid-solid interface. Numerical experiments are reported, assessing the efficiency of this coupled scheme.

1.
Morand
,
H. J.-P.
, and
Ohayon
,
R.
, 1995,
Fluid-Structure Interactions
,
Wiley
,
New York
.
2.
Bernadou
,
M.
, 1996,
Finite Element Methods for Thin Shell Problems
,
Wiley
,
New York
.
3.
Chapelle
,
D.
, and
Bathe
,
K. J.
, 1998, “
Fundamental Considerations for the Finite Element Analysis of Shell Structures
,”
Comput. Struct.
0045-7949,
66
, pp.
19
36
.
4.
Chapelle
,
D.
, and
Bathe
,
K. J.
, 2003,
The Finite Element Analysis of Shells: Fundamentals
,
Springer
,
Verlag
.
5.
Bathe
,
K. J.
, and
Dvorkin
,
E. N.
, 1985, “
A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
367
383
.
6.
Durán
,
R.
,
Hervella-Nieto
,
L.
,
Liberman
,
E.
,
Rodríguez
,
R.
, and
Solomin
,
J.
, 2000, “
Finite Element Analysis of the Vibration Problem of a Plate Coupled With a Fluid
,”
Numer. Math.
0029-599X,
86
, pp.
591
616
.
7.
Durán
,
R.
,
Hernández
,
E.
,
Hervella-Nieto
,
L.
,
Liberman
,
E.
, and
Rodríguez
,
R.
, 2004, “
Error Estimates for Low-Order Isoparametric Quadrilateral Finite Element for Plates
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
41
, pp.
1751
1772
.
8.
Hernández
,
E.
,
Hervella-Nieto
,
L.
, and
Rodríguez
,
R.
, 2003, “
Computation of the Vibration Modes of Plates and Shells by Low Order MITC Quadrilateral Finite Elements
,”
Comput. Struct.
0045-7949,
81
, pp.
615
628
.
9.
Gamallo
,
P.
, 2002, “
Métodos Numéricos de Elementos Finitos en Problemas de Interacción Fluido-Estructura
,” Ph.D. thesis, U. de Santiago de Compostela, Spain.
10.
Bermúdez
,
A.
, and
Rodríguez
,
R.
, 1994, “
Finite Element Computation of the Vibration Modes of a Fluid-Solid System
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
119
, pp.
355
370
.
11.
Bermúdez
,
A.
,
Gamallo
,
P.
, and
Rodríguez.
,
R.
, 2001, “
A Hexahedral Face Element Method for the Displacement Formulation of Structural Acoustics Problems
,”
J. Comput. Acoust.
0218-396X,
9
, pp.
911
918
.
12.
Malinen
,
M.
, and
Pitkäranta
,
J.
, 2000, “
A Benchmark Study of Reduced-Strain Shell Finite Elements: Quadratic Shemes
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
1637
1671
.
13.
Hernández
,
E.
, 2004, “
Approximation of the Vibration Modes of a Plate Coupled With a Fluid by Low-Order Isoparametric Finite Elements
,”
Math. Modell. Numer. Anal.
0764-583X,
38
, pp.
1055
1070
.
14.
Kyeong-Hoon
,
J.
, and
Kwi-Ja
,
K.
, 1998, “
Free Vibration of a Circular Cylindrical Shell Filled With Bounded Compressible Fluid
,”
J. Sound Vib.
0022-460X,
217
, pp.
197
221
.
15.
Bermúdez
,
A.
,
Hervella-Nieto
,
L.
, and
Rodríguez
,
R.
, 1999, “
Finite Element Computation of Three Dimensional Elastoacoustic Vibrations
,”
J. Sound Vib.
0022-460X,
219
, pp.
277
304
.
You do not currently have access to this content.