We consider a method to compute the vibration modes of an elastic thin structure (shell or plate) in contact with a compressible fluid. For the structure, the classical Naghdi equations, based on the Reissner–Mindlin hypothesis, are considered and its approximation using the mixed interpolation of tensorial component 4 finite element method. The fluid equations are discretized by using Raviart–Thomas elements, and a non-conforming coupling is used on the fluid-solid interface. Numerical experiments are reported, assessing the efficiency of this coupled scheme.
Issue Section:
Technical Papers
1.
Morand
, H. J.-P.
, and Ohayon
, R.
, 1995, Fluid-Structure Interactions
, Wiley
, New York
.2.
Bernadou
, M.
, 1996, Finite Element Methods for Thin Shell Problems
, Wiley
, New York
.3.
Chapelle
, D.
, and Bathe
, K. J.
, 1998, “Fundamental Considerations for the Finite Element Analysis of Shell Structures
,” Comput. Struct.
0045-7949, 66
, pp. 19
–36
.4.
Chapelle
, D.
, and Bathe
, K. J.
, 2003, The Finite Element Analysis of Shells: Fundamentals
, Springer
, Verlag
.5.
Bathe
, K. J.
, and Dvorkin
, E. N.
, 1985, “A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation
,” Int. J. Numer. Methods Eng.
0029-5981, 21
, pp. 367
–383
.6.
Durán
, R.
, Hervella-Nieto
, L.
, Liberman
, E.
, Rodríguez
, R.
, and Solomin
, J.
, 2000, “Finite Element Analysis of the Vibration Problem of a Plate Coupled With a Fluid
,” Numer. Math.
0029-599X, 86
, pp. 591
–616
.7.
Durán
, R.
, Hernández
, E.
, Hervella-Nieto
, L.
, Liberman
, E.
, and Rodríguez
, R.
, 2004, “Error Estimates for Low-Order Isoparametric Quadrilateral Finite Element for Plates
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429, 41
, pp. 1751
–1772
.8.
Hernández
, E.
, Hervella-Nieto
, L.
, and Rodríguez
, R.
, 2003, “Computation of the Vibration Modes of Plates and Shells by Low Order MITC Quadrilateral Finite Elements
,” Comput. Struct.
0045-7949, 81
, pp. 615
–628
.9.
Gamallo
, P.
, 2002, “Métodos Numéricos de Elementos Finitos en Problemas de Interacción Fluido-Estructura
,” Ph.D. thesis, U. de Santiago de Compostela, Spain.10.
Bermúdez
, A.
, and Rodríguez
, R.
, 1994, “Finite Element Computation of the Vibration Modes of a Fluid-Solid System
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 119
, pp. 355
–370
.11.
Bermúdez
, A.
, Gamallo
, P.
, and Rodríguez.
, R.
, 2001, “A Hexahedral Face Element Method for the Displacement Formulation of Structural Acoustics Problems
,” J. Comput. Acoust.
0218-396X, 9
, pp. 911
–918
.12.
Malinen
, M.
, and Pitkäranta
, J.
, 2000, “A Benchmark Study of Reduced-Strain Shell Finite Elements: Quadratic Shemes
,” Int. J. Numer. Methods Eng.
0029-5981, 48
, pp. 1637
–1671
.13.
Hernández
, E.
, 2004, “Approximation of the Vibration Modes of a Plate Coupled With a Fluid by Low-Order Isoparametric Finite Elements
,” Math. Modell. Numer. Anal.
0764-583X, 38
, pp. 1055
–1070
.14.
Kyeong-Hoon
, J.
, and Kwi-Ja
, K.
, 1998, “Free Vibration of a Circular Cylindrical Shell Filled With Bounded Compressible Fluid
,” J. Sound Vib.
0022-460X, 217
, pp. 197
–221
.15.
Bermúdez
, A.
, Hervella-Nieto
, L.
, and Rodríguez
, R.
, 1999, “Finite Element Computation of Three Dimensional Elastoacoustic Vibrations
,” J. Sound Vib.
0022-460X, 219
, pp. 277
–304
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.