The techniques used by Koiter in 1968 to derive a simplified set of linear equilibrium equations for an elastically isotropic circular cylindrical shell in terms of displacements and the associated pointwise error estimate engendered in Love’s uncoupled strain-energy density are here extended to derive analogous simplified equilibrium equations and an error estimate for elastically isotropic cylindrical shells of arbitrary closed cross section.
Issue Section:
Technical Briefs
1.
Koiter
, W. T.
, 1968, “Summary of Equations for Modified, Simplest Possible Accurate Linear Theory of Thin Circular Cylindrical Shells
,” Report No. 442, Lab. Tech. Mech., T. H. Delft.2.
Sanders
, J. L.
, Jr., 1959, “An Improved First-Approximation Theory for Thin Shells
,” NASA Report No. 24.3.
Koiter
, W. T.
, 1960, “A Consistent First Approximation in the General Theory of Thin Elastic Shells
,” The Theory of Thin Elastic Shells, Proceedings of the IUTAM Symposium
, Delft, 1959, W. T.
Koiter
, ed., North-Holland
, Amsterdam.4.
Love
, A. E. H.
, 1944, A Treatise on the Mathematical Theory of Elasticity
, 4th ed., Dover
, New York, p. 573
.5.
Flügge
, W.
, 1973, Stresses in Shells
, 2nd ed., Springer-Verlag
, New York, p. 215
.6.
Simmonds
, J. G.
, 1966, “A Set of Simple, Accurate Equations for Circular Cylindrical Elastic Shells
,” Int. J. Solids Struct.
0020-7683 2
, pp. 525
–541
.7.
Donnell
, L. H.
, 1933, “Stability of Thin-Walled Tubes Under Torsion
,” NACA TR 479.8.
Morley
, L. S. D.
, 1959, “An Improvement on Donnell’s Approximation for Thin-Walled Circular Cylinders
,” Q. J. Mech. Appl. Math.
0033-5614 12
, pp. 89
–99
.9.
Mangelsdorf
, C. P.
, 1973, “Morley-Koiter Equations for Thin-Walled Circular Cylindrical Shells. Part 1. General Solutions for Symmetrical Shells of Uniform Thickness
,” J. Appl. Mech.
0021-8936 40
, pp. 961
–965
.10.
Niordson
, F. I.
, 1985, Shell Theory
, North-Holland
, Amsterdam, Chap. 11.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.