Abstract

This paper presents a numerical approach to modeling a general system containing multiple interacting cracks and voids in an infinite elastic plate under remote uniform stresses. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks and voids, the original problem is divided into a homogeneous problem (the one without cracks and voids) subjected to remote loads and a multiple void-crack problem in an unloaded body with applied tractions on the surfaces of cracks and voids. Thus the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author. Test examples are included to illustrate that the numerical approach is very simple and effective for analyzing multiple crack/void problems in an infinite elastic plate. Specifically, the numerical approach is used to study the microdefect-finite main crack linear elastic interaction. In addition, complex crack problems in infinite/finite plate are examined to test further the accuracy and robustness of the boundary element method.

1.
Evans
,
A. G.
, and
Faber
,
K. T.
, 1981, “
Toughening of Ceramics by Circumferential Microcracking
,”
J. Am. Helicopter Soc.
0002-8711,
64
(
7
),
394
398
.
2.
Hutchinson
,
J. W.
, 1987, “
Crack Tip Shielding by Micro-Cracking in Brittle Solids
,”
Acta Metall.
0001-6160,
35
,
1605
1619
.
3.
Charalambides
,
P.
, and
McMeeking
,
R. M.
, 1987, “
Finite Element Method Simulation of Crack Propagation in a Brittle Microcracking Solids
,”
Mech. Mater.
0167-6636,
6
,
71
87
.
4.
Chudnovsky
,
A.
, and
Kachanov
,
M.
1983, “
Interaction of a Crack With a Field of Microcracks
,”
Int. J. Eng. Sci.
0020-7225,
21
,
1009
1018
.
5.
Chudnovsky
,
A.
,
Dolgopolsky
,
A.
, and
Kachanov
,
M.
, 1987, “
Elastic Interaction of a Crack With a Microcrack Array
,”
Int. J. Solids Struct.
0020-7683,
23
,
1
21
.
6.
Kachanov
,
M.
, and
Montagut
,
E.
, 1986, “
Interaction of a Crack Certain Microcrack Array
,”
Eng. Fract. Mech.
0013-7944,
25
,
625
636
.
7.
Horii
,
H.
, and
Nemat-Nasser
,
S.
, 1985, “
Elastic Fields of Interacting Inhomogeneities
,”
Int. J. Solids Struct.
0020-7683,
21
,
731
745
.
8.
Hori
,
M.
, and
Nemat-Nasser
,
S.
, 1987, “
Interacting Microcracksnear the Tip in the Process Zone of a Macrocrack
,”
J. Mech. Phys. Solids
0022-5096,
35
(
5
),
601
629
.
9.
Gong
,
S. X.
, and
Horii
,
H.
, 1989, “
General Solution to the Problem of Microcracks Near the Tip of a Main Crack
,”
J. Mech. Phys. Solids
0022-5096,
37
,
27
46
.
10.
Rose
,
L. R. F.
, 1986, “
Microcrack Interaction With a Main Crack
,”
Int. J. Fract.
0376-9429,
31
,
233
242
.
11.
Rubinstein
,
A.
1985, “
Macrocrack Interaction With Semi-Infinite Microcrack Array
,”
Int. J. Fract.
0376-9429,
27
,
113
119
.
12.
Rubinstein
,
A.
, 1986, “
Macrocrack-Microdefect Interaction
,”
ASME J. Appl. Mech.
0021-8936,
53
,
503
510
.
13.
Shum
,
D. K. M.
, and
Hutchinson
,
J. W.
, 1990, “
On Toughening by Microcracks
,”
Mech. Mater.
0167-6636,
9
,
83
91
.
14.
Kachanov
,
M.
, 1993,
J. W.
Hutchinson
and
T.
Wu
, eds,
Adv. Appl. Mech.
0065-2156,
30
,
259
455
.
15.
Wang
,
X. M.
,
Gao
,
S.
, and
Chen
,
Y. H.
, 1996, “
Further Investigation for the Macro-Microcrack Interaction I—In the Infinite Isotropic Body
,”
Int. J. Solids Struct.
0020-7683,
33
(
27
),
4051
4063
.
16.
Hu
,
K. X.
,
Chandra
,
A.
, and
Huang
,
Y.
, 1993, “
Multiple Void-Crack Interaction
,”
Int. J. Solids Struct.
0020-7683,
30
(
11
),
1473
1489
.
17.
Ducourthial
,
E.
,
Bouchaud
,
E.
, and
Chaboche
,
J. L.
, 2000, “
Influence of Microcracks on a Propagation of Macrocracks
,”
Comput. Mater. Sci.
0927-0256,
19
,
229
234
.
18.
Buckner
,
H. F.
, 1958, “
The Propagation of Cracks and the Energy of Elastic Deformation
,”
ASME J. Appl. Mech.
0021-8936,
80
,
1225
1230
.
19.
Yan
,
X.
, 2005, “
An Efficient and Accurate Numerical Method of SIFs Calculation of a Branched Crack
,”
ASME J. Appl. Mech.
0021-8936,
72
(
3
),
330
340
.
20.
Crouch
,
S. L.
, and
Starfield
,
A. M.
, 1983,
Boundary Element Method in Solid Mechanics, with Application in Rock Mechanics and Geological Mechanics
, London,
Geore Allon & Unwin
, Bonton, Sydney.
21.
Erdogan
,
F.
,
Gupta
,
F. G. D.
, and
Ratwani
,
M.
, 1974, “
Interaction Between a Circular Inclusion and an Arbitrarily Oriented Crack
,”
ASME J. Appl. Mech.
0021-8936,
31
,
1007
1013
.
22.
Gong
,
S. X.
, and
Meguid
,
S. A.
, 1992, “
Microdefect Interacting With a Main Crack: A General Treatment
,”
Int. J. Mech. Sci.
0020-7403,
34
,
933
945
.
23.
Murakami
,
Y.
, 1987,
Stress Intensity Factors Handbook
,
Pergamon Press
, New York.
24.
Chen
,
Z.
, 1999, “
Stress Intensity Factors for Curved and Kinked Cracks in Plane Extension
,”
Theor. Appl. Fract. Mech.
0167-8442,
31
,
223
232
.
25.
Pan
,
E.
, 1997, “
A General Boundary Element Analysis of 2-D Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
0376-9429,
88
,
41
59
.
26.
Scavia
,
C.
, 1992, “
A Numerical Technique for the Analysis of Cracks Subjected to Normal Compressive Stresses
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
,
929
942
.
27.
Barsoum
,
R.
, 1977, “
Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
11
,
85
98
.
28.
Kwon
,
Y. W.
, and
Akin
,
J. E.
, 1989, “
Development of a Derivative Singular Element for Aplication to Crack Propagation Problem
,”
Comput. Struct.
0045-7949,
31
(
3
),
467
471
.
29.
Crust
,
T.
, 1988,
Boundary element Analysis in Computational Fracture Mechanics
,
Kluwer
, Dordrecht.
30.
Newman
,
J.
, 1971, “
An Improved Method of Collocation for the Stress Analysis of Cracked Plates With Various Shaped Boundaries
,” Technical Report TN D-6376, NASA.
31.
Nisitani
,
H.
, 1985, “
Body Force Method for Determination of the Stress Intensity Factors
,”
Journal Aeronautical Society of India (Special Issue on Fracture Mechanics)
,
37
,
21
41
.
32.
Sneddon
,
I.
, 1973,
Methods of Analysis and Solutions of Crack Problems
,
Nordhoff International
, Leyden.
33.
Belytschko
,
T.
, and
Black
,
T.
, 1997, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
(
5
),
601
620
.
34.
Xu
,
Y. L.
,
Moran
,
B.
, and
Belytschko
,
T.
, 1997, “
Self-Similar Crack Expansion Method for Three-Dimensional Crack Analysis
,”
ASME J. Appl. Mech.
0021-8936,
64
(
4
),
729
737
.
35.
Moes
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
, 1999, “
A Finite Element Method With Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
,
131
150
.
36.
Daux
,
C.
,
Moes
,
N.
, and
Dolbow
,
J.
, 2000, “
Arbitrary Branched and Intersecting Cracks With the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
,
1741
1760
.
You do not currently have access to this content.