Acoustoelastic analysis has usually been applied to compressible engineering materials. Many materials (e.g., rubber and biologic materials) are “nearly” incompressible and often assumed incompressible in their constitutive equations. These material models do not admit dilatational waves for acoustoelastic analysis. Other constitutive models (for these materials) admit compressibility but still do not model dilatational waves with fidelity (shown herein). In this article a new strain energy function is formulated to model dilatational wave propagation in nearly incompressible, isotropic materials. This strain energy function requires four material constants and is a function of Cauchy–Green deformation tensor invariants. This function and existing (compressible) strain energy functions are compared based upon their ability to predict dilatational wave propagation in uniaxially prestressed rubber. Results demonstrate deficiencies in existing functions and the usefulness of our new function for acoustoelastic applications. Our results also indicate that acoustoelastic analysis has great potential for the accurate prediction of active or residual stresses in nearly incompressible materials.

1.
Hughes
,
D. S.
, and
Kelly
,
J. L.
, 1953, “
Second-Order Elastic Deformation of Solids
,”
Phys. Rev.
0031-899X,
92
, pp.
1145
1149
.
2.
Toupin
,
R. A.
, and
Bernstein
,
B.
, 1961, “
Sound Waves in Deformed Perfectly Elastic Materials; the Acoustoelastic Effect
,”
J. Acoust. Soc. Am.
0001-4966,
33
, pp.
216
225
.
3.
Truesdell
,
D.
, 1961, “
General and Exact Theory of Waves in Finite Elastic Strain
,”
Arch. Ration. Mech. Anal.
0003-9527,
8
, pp.
263
296
.
4.
Tokuoka
,
T.
, and
Iwashimizu
,
Y.
, 1968, “
Acoustical Birefringence of Ultrasonic Waves in Deformed Isotropic Elastic Material
,”
Int. J. Solids Struct.
0020-7683,
4
, pp.
383
389
.
5.
Blinka
,
J.
, and
Sachse
,
W.
, 1976, “
Application of Ultrasonic-Pulse-Spectroscopy Measurements of Experimental Stress Analysis
,”
Exp. Mech.
0014-4851,
16
, pp.
448
453
.
6.
Kino
,
G. S.
,
Hunter
,
J. B.
,
Johnson
,
G. C.
,
Selfridge
,
A. R.
,
Barnett
,
D. M.
,
Hermann
G.
, and
Steele
,
C. R.
, 1979, “
Acoustoelastic Imaging of Stress Fields
,”
J. Acoust. Soc. Am.
0001-4966,
50
(
4
), pp.
2606
2613
.
7.
King
,
R. B.
, and
Furtunko
,
C. M.
, 1983, “
Determination of In-Plane Residual Stress States in Plates Using Horizontally Polarized Shear Waves
,”
J. Appl. Phys.
0021-8979,
54
(
6
), pp.
3027
3035
.
8.
Thompson
,
R. B.
,
Lee
,
S. S.
, and
Smith
,
J. F.
, 1986, ”
Angular Dependence of Ultrasonic Wave Propagation in a Stressed Orthorhombic Continuum: Theory and Application to the Measurement of Stress and Texture
,”
J. Acoust. Soc. Am.
0001-4966,
80
(
3
), pp.
921
931
.
9.
Dike
.
J. J.
, and
Johnson
,
G. C.
, 1990, “
Residual Stress Determination Using Acoustoelasticity
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
12
17
.
10.
Iwashimizu
,
Y.
, and
Kobori
,
O.
, 1978, “
The Rayleigh Wave in a Finitely Deformed Isotropic Elastic Material
,”
J. Acoust. Soc. Am.
0001-4966,
64
(
3
), pp.
910
916
.
11.
Mase
,
G. T.
, and
Johnson
,
G. C.
, 1987 “
An Acoustoelastic Theory for Surface Waves in Anisotropic Media
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
127
135
.
12.
Lee
,
Y. C.
,
Kim
,
J. O.
, and
Achenbach
,
J. D.
, 1994, “
Measurement of Stresses by Line-Focused Acoustic Microscopy
,”
Ultrasonics
0041-624X,
32
(
5
), pp.
359
365
.
13.
Pao
,
Y. H.
,
Sache
,
W.
, and
Fukuoka
,
H.
, 1984,
Physical Acoustics
,
Academic
, Orlando, Vol.
XVII
, Chap. 2.
14.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Dover
, Mineola, Chap. 6.4.
15.
Erigen
,
A. C.
, and
Suhubi
,
E. S.
, 1974,
Elastodynamics
,
Academic
, New York, Vol.
1
, Chap. 4.
16.
Fu
,
Y.
, 1993, “
On the Propagation of Nonlinear Traveling Waves in an Incompressible Elastic Plate
,”
Wave Motion
0165-2125,
19
, pp.
271
292
.
17.
Gent
,
A. N.
, 2001,
Engineering with Rubber
,
Hanser
, Munich, Chap. 3.2.
18.
Folds
,
D. L.
, 1974, ”
Speed of Sound and Transmission Loss in Silicone Rubbers at Ultrasonic Frequencies
,”
J. Acoust. Soc. Am.
0001-4966,
56
(
4
), pp.
1295
1296
.
19.
Rivlin
,
R. S.
, 1949, “
Large Elastic Deformations of Isotropic Materials VI. Further Results in the Theory of Torsion, Shear and Flexuer
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
242
(
A845
), pp.
173
195
.
20.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Dover
, Mineola, Chap. 4.3, p.
221
.
21.
Cescotto
,
S.
, and
Fonder
,
G.
, 1979, “
A Finite Element Approach for Large Strain of Nearly Incompressible Rubber-Like Materials
,”
Int. J. Solids Struct.
0020-7683,
15
(
8
), pp.
589
605
.
22.
Liu
,
C. H.
,
Hofstetter
,
G.
, and
Mang
,
H. A.
, 1994, “
3D Finite Element Analysis of Rubber-Like Materials at Finite Strains
,”
Eng. Comput.
0263-4759,
11
, pp.
111
128
.
23.
Watanabe
,
H.
,
Hisada
,
T.
, and
Noguchi
,
H.
, 1995, “
Kinking Analysis by Hyper-Elastic Finite Element Method
,”
JSME Int. J., Ser. A
1340-8046,
38
, pp.
30
37
.
24.
Doll
,
S.
, and
Schweizerhof
,
K.
, 2000, “
On the Development of Volumetric Strain Energy Functions
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
17
21
.
25.
Smith
,
G. F.
, and
Rivlin
,
R. S.
, 1958, “
The Strain Energy Functions for Anisotropic Elastic Materials
,”
Trans. Am. Math. Soc.
0002-9947,
88
, pp.
175
193
.
26.
Tokuoka
T.
, 1979, ”
Nonlinear Acoustoelasticity of Isotropic Elastic Materials
,”
J. Acoust. Soc. Am.
0001-4966,
65
(
5
), pp.
1134
1139
.
27.
Johnson
,
G. C.
, 1982, “
Acoustoelastic Response of Polycrystalline Aggregates Exhibiting Transverse Isotropy
,”
J. Nondestruct. Eval.
0195-9298,
3
(
1
), pp.
1
8
.
You do not currently have access to this content.