An analytical solution to the virtual mass of a rotating fluid or solid sphere is obtained. The solution is valid at Reynolds number <10. The solution was based on integrating the kinetic energy of the fluid round the rotating sphere. The value of the virtual mass coefficient of the rotating sphere was found to be equal to 5.

1.
Davis
,
A. M. J.
, 1977, “
High Frequency Limiting Virtual Mass Coefficients of Heaving Half-Immersed Spheres
,”
J. Fluid Mech.
0022-1120,
80
, pp.
305
319
.
2.
Stokes
,
G. G.
, 1851,
Mathematical and Physical Papers
,
3
,
Johnson Reprint Corp.
, NY, p.
34
.
3.
Drew
,
D. A.
, and
Lahey
, Jr.,
R. T.
, 1987, “
The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Fluid
,”
Int. J. Multiphase Flow
0301-9322,
13
, pp.
113
121
.
4.
Chan
,
K. W.
,
Baird
,
M. H. I.
, and
Round
,
G. F.
, 1974, “
Motion of a Solid Sphere in a Horizontally Oscillating Liquid
,”
Chem. Eng. Sci.
0009-2509,
29
, pp.
1585
1592
.
5.
Kurose
,
R.
, and
Komori
,
S.
, 1999, “
Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,”
J. Fluid Mech.
0022-1120,
384
, pp.
183
206
.
6.
Milne-Thomson
,
L. M.
, 1972,
Theoretical Hydrodynamics
, 5th ed.,
Macmillan
, Glasgow, U.K.
7.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2003, “
Inertial and Viscous Forces on a Rigid Sphere in Straining Flows at Moderate Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
481
, pp.
105
148
.
8.
Magnaudet
,
J.
,
Rivero
,
M.
, and
Fabre
,
J.
, 1995, “
Accelerated Flows Past a Rigid Sphere or a Spherical Bubble. Part 1. Steady Straining Flow
,”
J. Fluid Mech.
0022-1120,
284
, pp.
97
135
.
9.
Lugt
,
H. J.
, 1983,
Vortex Flow in Nature and Technology
,
Wiley
, NY.
10.
Kendoush
,
A. A.
, 2003, “
The Virtual Mass of a Spherical-Cap Bubble
Phys. Fluids
1070-6631,
15
(
9
), pp.
2782
2785
;
Kendoush
,
A. A.
,2004, “
The Virtual Mass of a Spherical-Cap Bubble
Phys. Fluids
1070-6631,
16
(
7
), p.
2713
(E).
11.
Cheng
,
L. Y.
,
Drew
,
D. A.
, and
Lahey
, Jr.,
R. T.
, 1978, “
Virtual Mass Effects in Two-Phase Flow
,” Report No. NUREG/CR-0020, Division of Reactor Safety Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.
12.
Batchelor
,
G. K.
, 1967,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge, England, p.
454
.
13.
Sirdhar
,
G.
, and
Katz
,
J.
, 1995, “
Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex
,”
Phys. Fluids
1070-6631,
7
(
2
), pp.
389
399
.
You do not currently have access to this content.