A perturbation approach is used to obtain an approximation for the moment Lyapunov exponent of two coupled oscillators with commensurable frequencies driven by a small intensity real noise with dissipation. The generator for the eigenvalue problem associated with the moment Lyapunov exponent is derived without any restriction on the size of pth moment. An orthogonal expansion for the eigenvalue problem based on the Galerkin method is used to derive the stability results in terms of spectral densities. These results can be applied to study the moment and almost-sure stability of structural and mechanical systems subjected to stochastic excitation.

1.
Namachchivaya
,
N. Sri
, and
Van Roessel
,
H. J.
,
1993
, “
Maximal Lyapunov Exponent and Rotation Numbers for Two Coupled Oscillators Driven by Real Noise
,”
J. Stat. Phys.
,
71
(
3/4
), pp.
549
567
.
2.
Namachchivaya
,
N. Sri
,
Van Roessel
,
H. J.
, and
Doyle
,
M. M.
,
1996
, “
Moment Lyapunov Exponent for Two Coupled Oscillators Driven by Real Noise
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
56
, pp.
1400
1423
.
3.
Namachchivaya
,
N. Sri
, and
Van Roessel
,
H. J.
,
2001
, “
Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise
,”
ASME J. Appl. Mech.
,
68
, pp.
1400
1412
.
4.
Molc˘anov
,
S. A.
,
1978
, “
The Structure of Eigenfunctions of One-Dimensional Unordered Structures
,”
Math. USSR, Izv.
,
12
(
1
), pp.
69
101
.
5.
Arnold
,
L.
,
1984
, “
A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
44
(
4
), pp.
793
802
.
6.
Arnold, L., Oeljeklaus, E., and Pardoux, E., 1986, “Almost Sure and Moment Stability for Linear Ito^ Equations,” Lyapunov Exponents, Lecture Notes in Mathematics, Vol. 1186, Springer-Verlag, New York, pp. 129–159.
7.
Arnold, L., Kliemann, W., and Oeljeklaus, E., 1986, “Lyapunov Exponents of Linear Stochastic Systems,” Lyapunov Exponents, Lecture Notes in Mathematics, Vol. 1186 Springer-Verlag, New York, pp. 85–125.
8.
Namachchivaya, N. Sri, Ramakrishnan, N., Van Roessel, H. J., and Vedula, L., 2003, “Stochastic Stability of Two Coupled Oscillators in Resonance: Averaging Approach,” Nonlinear Stochastic Dynamics, N. Sri Namachchivaya and Y. K. Lin, (eds.), Solid Mechanics and Its Applications, Vol. 110, pp. 167–178, Kluwer Dordrecht.
9.
Arnold
,
L.
,
Doyle
,
M. M.
, and
Namachchivaya
,
N. Sri
,
1997
, “
Small Noise Expansion of Moment Lyapunov Exponents for General Two Dimensional Systems
,”
Dyn. Stab. Syst.
,
12
(
3
), pp.
187
211
.
10.
Khasminskii
,
R. Z.
, and
Moshchuk
,
N.
,
1998
, “
Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
58
(
1
), pp.
245
256
.
11.
Pardoux
,
E.
, and
Wihstutz
,
V.
,
1988
, “
Lyapunov Exponent and Rotation Number of Two-Dimensional Linear Stochastic Systems With Small Diffusion
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
48
(
2
), pp.
442
457
.
12.
Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco.
13.
Wedig, W. V., 1988, “Lyapunov Exponents of Stochastic Systems and Related Bifurcation Problems,” Stochastic Structural Dynamics: Progress in Theory and Applications, S. T. Ariaratnam, G. I. Schue¨ller, and I. Elishakoff, eds., Elsevier Applied Science, London, pp. 315–327.
You do not currently have access to this content.