A perturbation approach is used to obtain an approximation for the moment Lyapunov exponent of two coupled oscillators with commensurable frequencies driven by a small intensity real noise with dissipation. The generator for the eigenvalue problem associated with the moment Lyapunov exponent is derived without any restriction on the size of pth moment. An orthogonal expansion for the eigenvalue problem based on the Galerkin method is used to derive the stability results in terms of spectral densities. These results can be applied to study the moment and almost-sure stability of structural and mechanical systems subjected to stochastic excitation.
1.
Namachchivaya
, N. Sri
, and Van Roessel
, H. J.
, 1993
, “Maximal Lyapunov Exponent and Rotation Numbers for Two Coupled Oscillators Driven by Real Noise
,” J. Stat. Phys.
, 71
(3/4
), pp. 549
–567
.2.
Namachchivaya
, N. Sri
, Van Roessel
, H. J.
, and Doyle
, M. M.
, 1996
, “Moment Lyapunov Exponent for Two Coupled Oscillators Driven by Real Noise
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 56
, pp. 1400
–1423
.3.
Namachchivaya
, N. Sri
, and Van Roessel
, H. J.
, 2001
, “Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise
,” ASME J. Appl. Mech.
, 68
, pp. 1400
–1412
.4.
Molc˘anov
, S. A.
, 1978
, “The Structure of Eigenfunctions of One-Dimensional Unordered Structures
,” Math. USSR, Izv.
, 12
(1
), pp. 69
–101
.5.
Arnold
, L.
, 1984
, “A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 44
(4
), pp. 793
–802
.6.
Arnold, L., Oeljeklaus, E., and Pardoux, E., 1986, “Almost Sure and Moment Stability for Linear Ito^ Equations,” Lyapunov Exponents, Lecture Notes in Mathematics, Vol. 1186, Springer-Verlag, New York, pp. 129–159.
7.
Arnold, L., Kliemann, W., and Oeljeklaus, E., 1986, “Lyapunov Exponents of Linear Stochastic Systems,” Lyapunov Exponents, Lecture Notes in Mathematics, Vol. 1186 Springer-Verlag, New York, pp. 85–125.
8.
Namachchivaya, N. Sri, Ramakrishnan, N., Van Roessel, H. J., and Vedula, L., 2003, “Stochastic Stability of Two Coupled Oscillators in Resonance: Averaging Approach,” Nonlinear Stochastic Dynamics, N. Sri Namachchivaya and Y. K. Lin, (eds.), Solid Mechanics and Its Applications, Vol. 110, pp. 167–178, Kluwer Dordrecht.
9.
Arnold
, L.
, Doyle
, M. M.
, and Namachchivaya
, N. Sri
, 1997
, “Small Noise Expansion of Moment Lyapunov Exponents for General Two Dimensional Systems
,” Dyn. Stab. Syst.
, 12
(3
), pp. 187
–211
.10.
Khasminskii
, R. Z.
, and Moshchuk
, N.
, 1998
, “Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 58
(1
), pp. 245
–256
.11.
Pardoux
, E.
, and Wihstutz
, V.
, 1988
, “Lyapunov Exponent and Rotation Number of Two-Dimensional Linear Stochastic Systems With Small Diffusion
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 48
(2
), pp. 442
–457
.12.
Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco.
13.
Wedig, W. V., 1988, “Lyapunov Exponents of Stochastic Systems and Related Bifurcation Problems,” Stochastic Structural Dynamics: Progress in Theory and Applications, S. T. Ariaratnam, G. I. Schue¨ller, and I. Elishakoff, eds., Elsevier Applied Science, London, pp. 315–327.
Copyright © 2004
by ASME
You do not currently have access to this content.