This paper investigates the applicability and effect of the crack-free electrical boundary conditions in piezoelectric fracture. By treating flaws in a medium as notches with a finite width, the results from different electrical boundary condition assumptions on the crack faces are compared. It is found that the electrically impermeable boundary is a reasonable one for engineering problems. Unless the flaw interior is filled with conductive media, the permeable crack assumption may not be directly applied to the fracture of piezoelectric materials in engineering applications.
1.
Deeg, W., 1980, “The Analysis of Dislocation, Crack and Inclusion in Piezoelectric Solids,” Ph.D. thesis, Stanford University, Stanford, CA.
2.
Sosa
, H. A.
, and Pak
, Y. E.
, 1990
, “Three-Dimensional Eigenfunction Analysis of a Crack in a Piezoelectric Material
,” Int. J. Solids Struct.
, 26
, pp. 1
–15
.3.
Sosa
, H. A.
, 1991
, “Plane Problems in Piezoelectric Media With Defects
,” Int. J. Solids Struct.
, 28
, pp. 491
–505
.4.
Sosa
, H.
, 1992
, “On the Fracture Mechanics of Piezoelectric Solids
,” Int. J. Solids Struct.
, 29
, pp. 2613
–2622
.5.
Suo
, Z.
, Kuo
, C. M.
, Barnett
, D. M.
, and Willis
, J. R.
, 1992
, “Fracture Mechanics for Piezoelectric Ceramics
,” J. Mech. Phys. Solids
, 40
, pp. 739
–765
.6.
Pak
, Y. E.
, 1992
, “Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials
,” Int. J. Fract.
, 54
, pp. 79
–100
.7.
Park
, S. B.
, and Sun
, C. T.
, 1995
, “Effect of Electric Field on Fracture of Piezoelectric Ceramics
,” Int. J. Fract.
, 70
, pp. 203
–216
.8.
Park
, S. B.
, Sun
, C. T.
, 1995
, “Fracture Criteria for Piezoelectric Ceramics
,” J. Am. Ceram. Soc.
, 78
, pp. 1475
–1480
.9.
Fulton
, C. C.
, and Gao
, H.
, 2001
, “Effect of Local Polarization Switching on Piezoelectric Fracture
,” J. Mech. Phys. Solids
, 49
, pp. 927
–952
.10.
Gao
, H.
, and Barnett
, D. M.
, 1996
, “An Invariance Property of Local Energy Release Rate in a Strip Saturation Model of Piezoelectric Fracture
,” Int. J. Fract.
, 79
, pp. R25–R29
R25–R29
.11.
Gao
, H.
, Zhang
, T.-Y.
, and Tong
, P.
, 1997
, “Local and Global Energy Release Rates for an Electrically Yielded Crack in a Piezoelectric Ceramic
,” J. Mech. Phys. Solids
, 45
, pp. 491
–510
.12.
Dunn
, M. L.
, 1994
, “The Effects of Crack Face Boundary Conditions on the Fracture of Piezoelectric Solids
,” Eng. Fract. Mech.
, 48
, pp. 25
–39
.13.
Shindo
, Y.
, Ozawa
, E.
, and Nowacki
, J. P.
, 1990
, “Singular Stress and Electric Fields of a Cracked Piezoelectric Strip
,” Int. J. Appl. Electromagn. Mater.
, 1
, pp. 77
–87
.14.
Shindo
, Y.
, Watanabe
, K.
, and Narita
, F.
, 2000
, “Electroelastic Analysis of a Piezoelectric Ceramic Strip With a Central Crack
,” Int. J. Eng. Sci.
, 38
, pp. 1
–19
.15.
Mikahailov, G. K., and Parton, V. Z., 1990, Electromagnetoelasticity, Hemisphere, Washington, DC.
16.
Hao
, T. H.
, and Shen
, Z. Y.
, 1994
, “A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,” Eng. Fract. Mech.
, 47
, pp. 793
–802
.17.
McMeeking
, R. M.
, 2001
, “Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,” Int. J. Fract.
, 108
, pp. 25
–41
.18.
Zhang
, T. Y.
, Qian
, C. F.
, Tong
, P.
, 1998
, “Linear Electro-Elastic Analysis of a Cavity or a Crack in a Piezoelectric Material
,” Int. J. Solids Struct.
, 35
, pp. 2122
–2149
.19.
McMeeking
, R. M.
, 1999
, “Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
,” Eng. Fract. Mech.
, 64
, pp. 217
–244
.20.
Pak
, Y. E.
, 1990
, “Crack Extension Force in a Piezoelectric Material
,” ASME J. Appl. Mech.
, 57
, pp. 647
–653
.Copyright © 2004
by ASME
You do not currently have access to this content.