To accurately simulate the motion of slack marine cables, it is necessary to capture the effects of the cable’s bending and torsional stiffness. In this paper, a computationally efficient and novel third-order finite element is presented that provides a representation of both the bending and torsional effects and accelerates the convergence of the model at relatively large element sizes. Using a weighted residual approach, the discretized motion equations for the new cubic element are developed. Applying inter-element constraint equations, we demonstrate how an assembly of these novel elemental equations can be significantly reduced to prevent the growth of the system equations normallly associated with such higher order elements and allow for faster evaluation of the cable dynamics in either taut or low-tension situations.

1.
Burgess
,
J. J.
,
1993
, “
Bending Stiffness in the Simulation of Undersea Cable Deployment
,”
Int. J. Offshore Polar Eng.
,
3
(
3
), pp.
197
204
.
2.
Delmer
,
T. M.
,
Stephens
,
T. C.
, and
Coe
,
J. M.
,
1983
, “
Numerical Simulation of Towed Cables
,”
Ocean Eng.
,
10
(
2
), pp.
119
132
.
3.
Huang
,
S.
,
1994
, “
Dynamic Analysis of Three Dimensional Marine Cables
,”
Ocean Eng.
,
21
(
6
), pp.
587
605
.
4.
Sanders
,
J. V.
,
1982
, “
A Three Dimensional Dynamic Analysis of a Towed System
,”
Ocean Eng.
,
9
(
5
), pp.
483
499
.
5.
Vaz
,
M. A.
,
Witz
,
J. A.
, and
Patel
,
J. A.
,
1997
, “
Three Dimensional Transient Analysis of the Installation of Marine Cables
,”
Acta Mech.
,
124
, pp.
1
26
.
6.
Driscoll, F., and Nahon, M., 1996, “Mathematical Modeling and Simulation of a Moored Buoy System,” Proceedings of OCEANS 96 MTS/IEEE, Ft. Lauderdale, FL, 1, pp. 517–523.
7.
Thomas, D. O., and Hearn, G. E., 1994, “Deepwater Mooring Line Dynamics With Emphasis on Seabed Interference Effects,” Proceedings of the 26th Offshore Technology Conference, Houston, TX, pp. 203–214.
8.
Walton
,
T. S.
, and
Polacheck
,
H.
,
1960
, “
Calculation of Transient Motion of Submerged Cables
,”
Math. Comput.
,
14
(
69
), pp.
27
46
.
9.
Malahy, R. C., 1986, “A Non-linear Finite Element Method for the Analysis of Offshore Pipelines,” Proceedings of the 5th International Offshore Mechanics and Arctic Engineering Symposium, 3, pp. 471–478.
10.
McNamara
,
J. F.
,
O’Brien
,
P. J.
, and
Gilroy
,
S. G.
,
1988
, “
Nonlinear Analysis of Flexible Risers Using Hybrid Finite Elements
,”
ASME J. Offshore Mech. Arct. Eng.
,
110
, pp.
197
204
.
11.
O’Brien, P. J., and McNamara, J. F., 1988, “Analysis of Flexible Riser Systems Subject to Three-Dimensional Seastate Loading,” Proceedings of the International Conference on Behavior of Offshore Structures, 3, pp. 1373–1388.
12.
Garret
,
D. L.
,
1982
, “
Dynamic Analysis of Slender Rods
,”
ASME J. Energy Resour. Technol.
,
104
, pp.
302
306
.
13.
Nordgren
,
R. P.
,
1974
, “
On the Computation of the Motion of Elastic Rods
,”
ASME J. Appl. Mech.
,
41
, pp.
777
780
.
14.
Nordgren
,
R. P.
,
1982
, “
Dynamics Analysis of Marine Risers With Vortex Excitation
,”
ASME J. Energy Resour. Technol.
,
104
, pp.
14
19
.
15.
Chapman
,
D. A.
,
1982
, “
Effects of Ship Motion on a Neutrally-Stable Towed Fish
,”
Ocean Eng.
,
9
(
3
), pp.
189
220
.
16.
Kamman
,
J. W.
, and
Huston
,
R. L.
,
1999
, “
Modeling of Variable Length Towed and Tethered Cable Systems
,”
J. Guid. Control Dyn.
,
22
(
4
), pp.
602
608
.
17.
Makarenko
,
A. I.
,
Poddubnyi
,
V. I.
, and
Kholopova
,
V. V.
,
1997
, “
Study of the Non-Linear Dynamics of Self-Propelled Submersibles Controlled by A Cable
,”
International Applied Mechanics
,
22
(
3
), pp.
251
257
.
18.
Paul
,
B.
, and
Soler
,
A. I.
,
1972
, “
Cable Dynamics and Optimum Towing Strategies for Submersibles
,”
MTS Journal
,
6
(
2
), pp.
34
42
.
19.
Buckham
,
B.
,
Nahon
,
M.
,
Seto
,
M.
,
Zhao
,
X.
, and
Lambert
,
C.
,
2003
, “
Dynamics and Control of a Towed Underwater Vehicle System, Part I: Model Development
,”
Ocean Eng.
,
30
(
4
), pp.
453
470
.
20.
Lambert
,
C.
,
Nahon
,
M.
,
Buckham
,
B.
, and
Seto
,
M.
,
2003
, “
Dynamics and Control of a Towed Underwater Vehicle System, Part II: Model Validation and Turn Maneuver Optimization
,”
Ocean Eng.
,
30
(
4
), pp.
471
485
.
21.
Driscoll
,
F.
,
Lueck
,
R. G.
, and
Nahon
,
M.
,
2000
, “
Development and Validation of a Lumped-Mass Dynamics Model of a Deep-Sea ROV System
,”
Appl. Ocean. Res.
,
22
(
3
), pp.
169
182
.
22.
Driscoll, F., Buckham, B., and Nahon, M., 2000, “Numerical Optimization of a Cage-Mounted Passive Heave Compensation System,” Proceedings of OCEANS 2000 MTS/IEEE, Providence, RI, 2, pp. 1121–1127.
23.
McLain, T. W., and Rock, S. M., 1992, “Experimental Measurement of ROV Tether Tension,” Proceedings of the 10th Annual Subsea Intervention Conference and Exposition, San Diego, CA, pp. 291–296.
24.
Grosenbaugh
,
M. A.
,
Howell
,
C. T.
, and
Moxnes
,
S.
,
1993
, “
Simulating the Dynamics of Underwater Vehicles With Low-Tension Tethers
,”
Int. J. Offshore Polar Eng.
,
3
(
3
), pp.
213
218
.
25.
Banerjee
,
A. K.
, and
Do
,
V. N.
,
1994
, “
Deployment Control of a Cable Connecting a Ship to an Underwater Vehicle
,”
J. Guid. Control Dyn.
,
17
(
4
), pp.
1327
1332
.
26.
Buckham
,
B.
, and
Nahon
,
M.
,
2001
, “
Formulation and Validation of a Lumped Mass Model for Low-Tension ROV Tethers
,”
Int. J. Offshore Polar Eng.
,
11
(
4
), pp.
282
289
.
27.
O’Neill, B., 1966, Elementary Differential Geometry, Academic Press, San Diego, CA, pp. 51–77.
28.
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, New York, pp. 381–398.
29.
Folb, R., and Nelligan, J. J., 1983, “Hydrodynamic Loading on Armoured Towcables,” DTNSRDC Report 82/116.
30.
Newman, J. N., 1989, Marine Hydrodynamics, The M.I.T. Press, Cambridge, MA.
31.
Howard
,
B. E.
, and
Syck
,
J. M.
,
1992
, “
Calculation of the Shape of a Towed Underwater Acoustic Array
,”
Journal of Oceanic Engineering
,
17
(
2
), pp.
193
201
.
32.
Logan, D. L., 1993, A First Course in the Finite Element Method, 2nd Ed., PWS, Boston, MA, pp. 195–239.
33.
Rao, S. S., 1989, The Finite Element Method in Engineering, 2nd Ed., Pergamon Press, Toronto, ON, pp. 101–198; 291–300.
34.
Burnett, D. S., 1987, Finite Element Analysis. From Concepts to Applications, Addison-Wesley, Don Mills, ON, pp. 53–197.
35.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannetry, B. P., 1992, Numerical Recipes in C, Cambridge University Press, New York, pp. 113–117.
You do not currently have access to this content.