We study a mathematical model for unforced and undamped, initially straight beams. This system is governed by an integro-partial differential equation, and its energy is conserved: It is an infinite-degree-of-freedom Hamiltonian system. We can derive “exact” finite-degree-of-freedom mode truncations for it. Using the differential Galois theory for Hamiltonian systems, we prove that any two or more modal truncations for the model are nonintegrable in the following sense: The Hamiltonian systems do not have the same number of “meromorphic” first complex integrals which are independent and in involution, as the number of their degrees of freedom, when they are regarded as Hamiltonian systems with complex time and coordinates. This also means the nonintegrability of the infinite-degree-of-freedom model for the beams. We present numerical simulation results and observe that chaotic motions occur as in typical nonintegrable Hamiltonian systems.

1.
Woinowsky-Krieger
,
S.
,
1950
, “
The Effect of an Axial Force on the Vibration of Hinged Bars
,”
ASME J. Appl. Mech.
,
17
, pp.
35
36
.
2.
Burgreen
,
D.
,
1951
, “
Free Vibrations of a Pin-Ended Column With Constant Distance Between Pin Ends
,”
ASME J. Appl. Mech.
,
18
, pp.
135
139
.
3.
Eisley
,
J. G.
,
1964
, “
Nonlinear Vibration of Beams and Rectangular Plates
,”
Z. Angew. Math. Phys.
,
15
, pp.
167
175
.
4.
Srinivasan
,
A. V.
,
1966
, “
Nonlinear Vibrations of Beams and Plates
,”
Int. J. Non-Linear Mech.
,
1
, pp.
179
191
.
5.
Ray
,
J. D.
, and
Bert
,
C. W.
,
1969
, “
Nonlinear Vibrations of a Beam With Pinned Ends
,”
ASME J. Eng. Ind.
,
91
, pp.
997
1004
.
6.
Bennet
,
J. A.
, and
Eisley
,
J. G.
,
1970
, “
A Multiple Degree-of-Freedom Approach to Nonlinear Beam Vibrations
,”
AIAA J.
,
8
, pp.
734
739
.
7.
Tseng
,
W. Y.
, and
Dugundji
,
J.
,
1970
, “
Nonlinear Vibrations of a Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
37
, pp.
292
297
.
8.
Bennett
,
J. A.
, and
Rinkel
,
R. L.
,
1972
, “
Ultraharmonic Vibrations of Nonlinear Beams
,”
AIAA J.
,
10
, pp.
715
716
.
9.
Bennett
,
J. A.
,
1973
, “
Ultraharmonic Motion of a Viscously Damped Nonlinear Beams
,”
AIAA J.
,
11
, pp.
710
715
.
10.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley and Sons, New York.
11.
Guckenheimer, J., and Holmes, P. J., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
12.
Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
13.
Holmes
,
P. J.
, and
Marsden
,
J. E.
,
1981
, “
A Partial Differential Equation With Infinitely Many Periodic Orbits: Chaotic Oscillations of a Forced Beam
,”
Arch. Ration. Mech. Anal.
,
76
, pp.
135
165
.
14.
Tseng
,
W. Y.
, and
Dugundji
,
J.
,
1971
, “
Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
38
, pp.
467
476
.
15.
Moon
,
F. C.
, and
Holmes
,
P. J.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vib.
,
65
, pp.
275
296
.
16.
Yagasaki
,
K.
,
2000
, “
Horseshoes in Two-Degree-of-Freedom Hamiltonian Systems With Saddle-Centers
,”
Arch. Ration. Mech. Anal.
,
154
(
2000
), pp.
275
296
.
17.
Yagasaki, K., 2003, “Homoclinic and Heteroclinic Orbits to Invariant Tori in Multi-Degree-of-Freedom Hamiltonian Systems With Saddle-Centers,” submitted for publication.
18.
Yagasaki
,
K.
,
2001
, “
Homoclinic and Heteroclinic Behavior in an Infinite-Degree-of-Freedom Hamiltonian System: Chaotic Free Vibrations of an Undamped, Buckled Beam
,”
Phys. Lett. A
,
285
, pp.
55
62
.
19.
Arnold
,
V. I.
,
1964
, “
Instability of Dynamical Systems With Many Degrees of Freedom
,”
Sov. Math. Dokl.
,
5
, pp.
581
585
.
20.
Lochak, P., 1999, “Arnold Diffusion: A Compendium of Remarks and Questions,” Hamiltonian Systems with Three or More Degrees of Freedom, edited by C. Simo´, Kluwer, Dordrecht, pp. 168–183.
21.
Yagasaki
,
K.
,
2002
, “
Numerical Evidence of Fast Diffusion in a Three-Degree-of-Freedom Hamiltonian System With a Saddle-Center
,”
Phys. Lett. A
,
301
, pp.
45
52
.
22.
Yagasaki
,
K.
,
1992
, “
Chaotic Dynamics of a Quasiperiodically Forced Beam
,”
ASME J. Appl. Mech.
,
59
, pp.
161
167
.
23.
Yagasaki
,
K.
,
1995
, “
Bifurcations and Chaos in a Quasi-Periodically Forced Beam: Theory, Simulation, and Experiment
,”
J. Sound Vib.
,
183
, pp.
1
31
.
24.
Morales-Ruiz
,
J. J.
, and
Ramis
,
J. P.
,
2001
, “
Galoisian Obstructions to Integrability of Hamiltonian Systems
,”
Methods Appl. Anal.
,
8
, pp.
33
96
.
25.
Morales-Ruiz, J. J., 1999, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Birkha¨user, Basel.
26.
Morales-Ruiz
,
J. J.
,
2001
, “
Meromorphic Nonintegrability of Hamiltonian Systems
,”
Rep. Math. Phys.
,
48
, pp.
183
194
.
1.
Morales-Ruiz
,
J. J.
, and
Simo´
,
C.
,
1996
, “
Non-Integrability Criteria for Hamiltonians in the Case of Lame´ Normal Variational Equations
,”
J. Diff. Eqns.
,
129
, pp.
111
135
;
2.
Corrigendum:
1998
,
144
, pp.
477
478
.
1.
Morales-Ruiz
,
J. J.
, and
Peris
,
J. M.
,
1999
, “
On a Galoisian Approach to the Splitting of Separatrices
,”
Ann. Fac. Sci. Toulouse VI. Se´r., Math.
,
8
, pp.
125
141
.
2.
Yagasaki, K., 2003, “Galoisian Obstructions to Integrability and Melnikov Criteria for Chaos in Two-Degree-of-Freedom Hamiltonian Systems With Saddle-Centers,” Nonlinearity, to appear.
3.
Moser, J., 1973, Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, NJ.
4.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag, New York.
5.
Kaplansky, I., 1976, An Introduction to Differential Algebra, 2nd ed., Hermann, Paris.
6.
Singer, M. F., 1989, “An Outline of Differential Galois Theory,” Computer Algebra and Differential Equations, edited by E. Tournier, Academic Press, London, pp. 3–57.
7.
Van der Put, M., and Singer, M. F., 2003, Galois Theory of Linear Differential Equations, Springer-Verlag, New York.
8.
Ziglin
,
S. L.
,
1982
, “
Branching of Solutions and Non-Existence of First Integrals in Hamiltonian Mechanics, I
,”
Funct. Anal. Appl.
,
16
, pp.
181
189
.
9.
Morales-Ruiz
,
J. J.
, and
Simo´
,
C.
,
1994
, “
Picard-Vessiot Theory and Ziglin’s Theorem
,”
J. Diff. Eqns.
,
104
, pp.
140
162
.
10.
Whittaker, E. T., and Watson, G. N., 1927, A Course of Modern Analysis, Cambridge University Press, Cambridge.
11.
Hairer, E., Nørsett, S. P., and Wanner, G., 1993, Solving Ordinary Differential Equations I, 2nd ed., Springer-Verlag, Berlin.
12.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1989
, “
Practical Runge-Kutta Processes
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
,
10
, pp.
977
989
.
13.
Nusse, E. H., and Yorke, J. A., 1997, Dynamics: Numerical Explorations, 2nd ed., Springer-Verlag, New York.
14.
Yagasaki, K., 2003, “Numerical Analysis for Local and Global Bifurcations of Periodic Orbits in Autonomous Differential Equations,” in preparation.
15.
Yagasaki, K., 2003, HomMap: A Package of AUTO and Dynamics Drivers for Homoclinic Bifurcation Analysis for Periodic Orbits of Maps and ODEs, Version 2.0, Gifu University, Gifu, in preparation.
16.
Abraham, R., and Marsden, J. E., 1978, Foundations of Mechanics, 2nd ed., Addison-Wesley, Redwood City, CA.
17.
Marsden, J. E., and Ratiu, T., 1999, Introduction to Mechanics and Symmetry, 2nd ed., Springer-Verlag, New York.
18.
Yagasaki, K., 2003, “Homoclinic and Heteroclinic Motions for Resonant Periodic Orbits in Forced, Two-Degree-of-Freedom Systems,” in preparation.
19.
Lang, S., 1990, Undergraduate Algebra, 2nd ed., Springer-Verlag, New York.
You do not currently have access to this content.