A permeable crack model is proposed to analyze crack growth in a piezoelectric ceramic. In this model, a permeable crack is modeled as a vanishing thin, finite dimension, rectangular slit with dielectric medium inside. A first-order approximation solution is derived in terms of the slit height, h0. The main contribution of this paper is that the newly proposed permeable crack model reveals that there exists a realistic leaky mode for electrical field, which allows applied electric field passing through the dielectric medium inside a crack. By taking into account the leaky mode effect, a correct estimation of electrical and mechanical fields in front of a crack tip in a piezoelectric ceramic is obtained. To demonstrate this new finding, a closed-form solution is obtained for a mode III permeable crack under both mechanical as well electrical loads. Both local and global energy release rates are calculated based on the permeable crack solution obtained. It is found that the global energy release rate derived for a permeable crack is in a broad agreement with some known experimental observations. It may be served as a fracture criterion for piezoelectric materials. This contribution reconciles the outstanding discrepancy between experimental observation and theoretical analysis on crack growth problem in piezoelectric materials.

1.
Pak
,
Y. E.
,
1990
, “
Crack Extension Force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
,
57
, pp.
647
653
.
2.
Pak
,
Y. E.
,
1992
, “
Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
,
54
, pp.
79
100
.
3.
Li
,
S.
,
Cao
,
W.
, and
Cross
,
L. E.
,
1990
, “
Stress and Electric Displacement Distribution Near Griffith’s Type III Crack Tips in Piezoceramics
,”
Mater. Lett.
,
10
, pp.
219
222
.
4.
Sosa
,
H. A.
,
1990
, “
Three-Dimensional Eigenfunction Analysis of a Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
26
, pp.
1
15
.
5.
Sosa
,
H. A.
,
1991
, “
Plane Problems in Piezoelectric Media With Defects
,”
Int. J. Solids Struct.
,
28
, pp.
491
505
.
6.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
, pp.
739
765
.
7.
Suo
,
Z.
,
1993
, “
Models for Breakdown-Resistant Dielectric and Ferroelectric Ceramics
,”
J. Mech. Phys. Solids
,
41
, pp.
1155
1176
.
8.
Dunn
,
M. L.
,
1994
, “
The Effects of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solids
,”
Eng. Fract. Mech.
,
48, pp.
25
39
.
9.
Dascalu
,
C.
, and
Maugin
,
G. A.
,
1994
, “
Energy-Release Rates and Path-Independent Integrals in Electroelastic Crack Propagation
,”
Int. J. Eng. Sci.
,
32
, pp.
755
765
.
10.
Dascalu
,
C.
, and
Maugin
,
G. A.
,
1995
, “
On the Electroelastic Fracture
,”
ZAMP
,
46
, pp.
355
365
.
11.
Park
,
S.
, and
Sun
,
C. T.
,
1995
, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
78
, pp.
1475
1480
.
12.
Park
,
S.
, and
Sun
,
C. T.
,
1995
, “
Effect of Electric Field on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract.
,
70
, pp.
203
216
.
13.
Gao
,
H.
, and
Barnett
,
D. M.
,
1996
, “
An Invariance Property of Local Energy Release Rates in a Strip Saturation Model of Piezoelectric Fracture
,”
Int. J. Fract.
,
44
, pp.
R25–R29
R25–R29
.
14.
Gao
,
H.
,
Zhang
,
T.-Y.
, and
Tong
,
P.
,
1997
, “
Local and Global Energy Release Rates for an Electrically Yielded Crack in a Piezoelectric Ceramic
,”
J. Mech. Phys. Solids
,
45
, pp.
491
510
.
15.
Lynch
,
C. S.
,
Yang
,
W.
,
Suo
,
Z.
, and
McMeeking
,
R. M.
,
1995
, “
Electric Field Induced Cracking in Ferroelectric Ceramics
,”
Ferroelectrics
,
166
, pp.
11
30
.
16.
Lynch
,
C. S.
,
Chen
,
L.
,
Suo
,
Z.
,
McMeeking
,
R. M.
, and
Yang
,
W.
,
1995
, “
Crack Growth in Ferroelectric Ceramics Driven by Cyclic Polarization Switching
,”
J. Intell. Mater. Syst. Struct.
,
6
, pp.
191
198
.
17.
Zhang
,
T.-Y.
, and
Hack
,
J. E.
,
1992
, “
Mode-III Crack in Piezoelectric Materials
,”
J. Appl. Phys.
,
71
, pp.
5865
5870
.
18.
Fulton
,
C. C.
, and
Gao
,
H.
,
2001
, “
Effect of Local Polarization Switching on Piezoelectric Fracture
,”
J. Mech. Phys. Solids
,
49
, pp.
927
952
.
19.
Ru
,
C. Q.
,
Mao
,
X.
, and
Epstein
,
M.
,
1998
, “
Electric-Field Induced Interfacial Cracking in Multilayer Electrictive Actuators
,”
J. Mech. Phys. Solids
,
46
, pp.
1301
1318
.
20.
Ru
,
C. Q.
,
1999
, “
Effect of Electrical Polarization Saturation on Stress Intensity Factors in a Piezoelectric Ceramic
,”
Int. J. Solids Struct.
,
36
, pp.
869
883
.
21.
Yang
,
W.
, and
Zhu
,
T.
,
1998
, “
Fracture and Fatigue of Ferroelectric Under Electric and Mechanical Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
, pp.
1361
1369
.
22.
Yang
,
W.
, and
Zhu
,
T.
,
1998
, “
Switch-Toughening of Ferroelectric Subjected to Electric Field
,”
J. Mech. Phys. Solids
,
46
, pp.
291
311
.
23.
Zhu
,
T.
, and
Yang
,
W.
,
1997
, “
Toughness Variation of Ferroelectrcs by Polarization Switch Under Non-uniform Electric Field
,”
Acta Mater.
,
45
, pp.
4695
4702
.
24.
Zhang
,
T.-Y.
, and
Tong
,
P.
,
1996
, “
Fracture Mechanics for a Mode III Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
33
, pp.
343
359
.
25.
Zhang
,
T.-Y.
,
Qian
,
C.-F.
, and
Tong
,
P.
,
1998
, “
Linear Electro-Elastic Analysis of a Cavity or a Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
35
, pp.
2121
2149
.
26.
McMeeking
,
R. M.
,
1999
, “
Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
,”
Eng. Fract. Mech.
,
64
, pp.
217
244
.
27.
McMeeking
,
R. M.
,
2001
, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
,
108
, pp.
25
41
.
28.
Zhang, T.-Y., Zhao, M., and Tong, P., 2001, “Fracture of Piezoelectric Ceramics,” Advances in Applied Mechanics, E. vsn der Giessen and T. Y. Wu, eds., Academic Press, San Diego, CA, 38, pp. 147–289.
29.
Auld, B. A., 1973, Acoustic Fields and Waves in Solids, Vols. I and II. John Wiley and Sons, New York.
30.
Malvern, L. E., 1969, Introduction to the Mechanics of af a Continuous Medium, Prentice-Hall, Englewood Cliffs, NJ.
31.
Jackson, J. D., 1974, Classical Electrodynamics, John Wiley and Sons, New York.
32.
Erde´ly, A., Oberhettinger, F., Magnus, W., and Tricomi, F. G., 1954, Tables of Integral Transforms. Based, in Part, on Notes Left by Harry Bateman, Vols. 1–2, McGraw-Hill, New York.
33.
Lighthill, M. J., 1958, Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge, UK.
34.
Yang
,
F.
, and
Kao
,
I.
,
1999
, “
Crack Problem in Piezoelectric Materials: General Anti-Plane Mechanical Loading
,”
Mech. Mater.
,
31
, pp.
395
406
.
35.
Cherepanov, G. P., 1979, Mechanics of Brittle Fracture, McGraw-Hill, New York.
36.
Mao
,
S. X.
,
Li
,
X.
, and
Han
,
X.
,
2000
, “
Toughening of Ferroelectric Ceramics Under Polarization Switching
,”
Mater. Sci. Eng.
,
A292
, pp.
66
73
.
37.
Li, S., 2002, “On Permeable Cracks in a Piezoelectric Ceramic. I. Global Energy Release Rate,” submitted for publication.
You do not currently have access to this content.