Abstract

Based on a well-established nonincremental interaction law for fully anisotropic and compressible elastic-inelastic behavior of polycrystals, tangent formulation-based and simplified interaction laws, of softened nature, are derived to describe the nonlinear elastic-inelastic behavior of fcc polycrystals under different loading paths. Within the framework of small strain hypothesis, the elastic behavior, which is defined at granular level, is assumed to be isotropic, uniform, and compressible neglecting the grain rotation. The heterogeneous inelastic deformation is microscopically determined using the slip theory. In addition, the granular elastic behavior and its heterogeneous distribution from grain to grain within a polycrystal are taken into account. Comparisons between these two approaches show that the simplified one is more suitable to describe the overall responses of polycrystals notably under multiaxial loading paths. Nonlinear stress-strain behavior of polycrystals under complex loading, especially a cyclic one, is of particular interest in proposed modeling. The simplified model describes fairly well the yield surface evolution after a certain inelastic prestraining and the principle cyclic features such as Bauschinger effect, additional hardening, etc.

1.
Sachs
,
G.
,
1928
, “
Zur Ableitung einer Fliessbedingung
,”
Z. Ver. Dent. Ing.
,
72
, p.
734
734
.
2.
Cox
,
H. L.
, and
Sompmith
,
D. E.
,
1937
, “
Effect of Orientation on Stresses in Single Crystals and of Random Orientation on Strength of Polycrystalline Aggregates
,”
Proc. Phys. Soc. London
,
49
, p.
134
134
.
3.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, p.
307
307
.
4.
Hershey
,
A.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
, p.
236
236
.
5.
Kro¨ner
,
E.
,
1958
, “
Berechnung der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls
,”
Z. Phys.
,
151
, p.
504
504
.
6.
Laws
,
N.
, and
McLaughlin
,
R.
,
1978
, “
Self-Consistent Estimates for the Viscoelastic Creep Compliance of Composite Materials
,”
Proc. R. Soc. London, Ser. A
,
A359
, p.
251
251
.
7.
Kouddane, R., Molinari, A., and Canova, G. R., 1993, “Self-Consistent Modeling of Heterogeneous Viscoelastic and Elasto-Viscoplastic Materials,” Large Plastic Deformation: Fundamentals and Applications to Metal Forming, C. Teodosiu, J. L. Raphanel, and F. Sidoroff, eds., Mecamat 91, A. A. Balkema, Rotterdam, p. 129.
8.
Brown
,
G. M.
,
1970
, “
A Self-Consistent Polycrystalline Model for Creep Under Combined Stress States
,”
J. Mech. Phys. Solids
,
18
, p.
367
367
.
9.
Rice
,
J. R.
,
1970
, “
On the Structure of Stress-Strain Relations for Time Dependent Plastic Deformation in Metals
,”
ASME J. Appl. Mech.
,
37
, p.
728
728
.
10.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
Trans. J. Mech. Phys. Solids
,
19
, p.
433
433
.
11.
Hutchinson
,
J. W.
,
1976
, “
Bounds and Self-Consistent Estimate for Creep of Polycrystalline Materials
,”
Proc. R. Soc. London, Ser. A
,
A348
, p.
101
101
.
12.
Molinari
,
A.
,
Canova
,
G. R.
, and
Ahzi
,
S.
,
1987
, “
A Self-Consistent Approach of the Large Deformation Viscoplasticity
,”
Acta Metall.
,
35
, p.
2983
2983
.
13.
Weng
,
G. J.
,
1993
, “
A Self-Consistent Relation for the Time-Dependent Creep of Polycrystals
,”
Int. J. Plast.
,
9
, p.
181
181
.
14.
Lebensohn
,
R. A.
, and
Tome´
,
C. N.
,
1993
, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metall. Mater.
,
41
, p.
2611
2611
.
15.
Lebensohn
,
R. A.
,
Tome´
,
C. N.
,
1994
, “
A Self-Consistent Viscoplastic Model: Prediction of Rolling Texture of Anisotropic Polycrystals
,”
Mater. Sci. Eng., A
,
A175
, p.
71
71
.
16.
Lin
,
T. H.
,
1957
, “
Analysis of Elastic and Plastic Strain of FCC Crystal
,”
J. Mech. Solids
,
5
, p.
143
143
.
17.
Kro¨ner
,
E.
,
1961
, “
Zur Plastichen Verformung des Vielkristalls
,”
Acta Metall.
,
9
, p.
155
155
.
18.
Budianski, B., and Wu, T. T., 1962, “Theoretical Prediction of Plastic Strains of Polycrystals,” Proc. 4th U.S. Nat. Cong. Appl. Mech., ASME, New York, p. 1175.
19.
Hill
,
R.
,
1965
, “
Continuum Micro-mechanical Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
, p.
89
89
.
20.
Hutchinson
,
J. W.
,
1970
, “
Elastic-Plastic Behaviour of Polycrystalline Metals and Composites
,”
Proc. R. Soc. London, Ser. A
,
A319
, p.
247
247
.
21.
Berveiller
,
M.
, and
Zaoui
,
A.
,
1979
, “
An Extension of the Self-Consistent Scheme to Plasticity Flowing Polycrystals
,”
J. Mech. Phys. Solids
,
26
, p.
325
325
.
22.
Weng
,
G. J.
,
1982
, “
A Unified Self-Consistent Theory for the Plastic-Creep Deformation of Metals
,”
ASME J. Appl. Mech.
,
49
, p.
728
728
.
23.
Iwakuma
,
T.
, and
Nemat-Nasser
,
S.
,
1984
, “
Finite Elastic Deformation of Polycrystalline Metals
,”
Proc. R. Soc. London, Ser. A
,
A394
, p.
87
87
.
24.
Nemat-Nasser
,
S.
, and
Obata
,
M.
,
1986
, “
Rate-Dependent, Finite Elasto-Plastic Deformation of Polycrystals
,”
Proc. R. Soc. London, Ser. A
,
A407
, p.
343
343
.
25.
Lipinski
,
P.
,
Krier
,
J.
, and
Berveiller
,
M.
,
1990
, “
Elastoplasticite´ des Me´taux en Grandes De´formations: Comportement Global et Evolution de la Structure Interne
,”
Rev. Phys. Appl.
,
25
, p.
361
361
.
26.
Lipinski
,
P.
,
Naddari
,
A.
, and
Berveiller
,
M.
,
1992
, “
Recent Results Concerning the Modeling of Polycrystalline Plasticity at Large Strains
,”
Int. J. Solids Struct.
,
92
, p.
1873
1873
.
27.
Rougier
,
Y.
,
Stola
,
C.
, and
Zaoui
,
A.
,
1994
, “
Self-Consistent Modelling of Elastic-Viscoplastic Polycrystals
,”
C. R. Acad. Sci. Paris
,
319
, p.
145
145
.
28.
Molinari
,
A.
,
Ahzi
,
S.
, and
Kouddane
,
R.
,
1997
, “
On the Self-Consistent Modeling of Elasto-Plastic Behavior of Polycrystals
,”
Mech. Mater.
,
26
, p.
43
43
.
29.
Schmitt
,
C.
,
Lipinski
,
P.
, and
Berveiller
,
M.
,
1997
, “
Micromechanical Modelling of the Elastoplastic Behavior of Polycrystals Containing Precipitates—Application to Hypo- and Hyper-eutectoid Steels
,”
Int. J. Plast.
,
13
, p.
183
183
.
30.
Abdul-Latif
,
A.
,
Dingli
,
J. Ph.
, and
Saanouni
,
K.
,
1998
, “
Modeling of Complex Cyclic Inelasticity in Heterogeneous Polycrystalline Microstructure
,”
J. Mech. Mater.
,
30
, p.
287
287
.
31.
Schmid, E., 1924, Proc. Int. Congr. Appl. Mech, Delft, p. 342.
32.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
1994
, “
Damaged Anelastic Behavior of FCC Poly-Crystalline Metals With Micromechanical Approach
,”
Int. J. Damage Mech.
,
3
, p.
237
237
.
33.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
1996
, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part II Applications
,”
Int. J. Plast.
,
12
, p.
1123
1123
.
34.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
1997
, “
Effect of Some Parameters on the Plastic Fatigue Behavior With Micromechanical Approach
,”
Int. J. Damage Mech.
,
6
, p.
433
433
.
35.
Saanouni
,
K.
, and
Abdul-Latif
,
A.
,
1996
, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part I. Theoretical Formulation
,”
Int. J. Plast.
,
12
, p.
1111
1111
.
36.
Abdul-Latif
,
A.
,
1999
, “
Unilateral Effect in Plastic Fatigue with Micromechanical Approach
,”
Int. J. Damage Mech.
,
8
, p.
316
316
.
37.
Abdul-Latif
,
A.
,
Ferney
,
V.
, and
Saanouni
,
K.
,
1999
, “
Fatigue Damage of Waspaloy Under Complex Loading
,”
ASME J. Eng. Mater. Technol.
,
121
, p.
278
278
.
38.
Cailletaud
,
G.
,
1992
, “
A Micromechanical Approach to Inelastic Behaviour of Metals
,”
Int. J. Plast.
,
8
, p.
55
55
.
39.
Dingli, J. P., 1997, “Mode´lisation du Comportement Ane´lastique des Mate´riaux Polycristallins He´te´roge`nes,” Me´moire de DEA, Universite´ de Technologie de Compie`gne.
40.
Franc¸ois, D., Pineau, A., and Zaoui, A., 1993, Comportement Me´canique des Mate´riaux, Hermens, Paris.
41.
Kocks
,
U. F.
, and
Brown
,
T. J.
,
1966
, “
Latent Hardening in Aluminum
,”
Acta Metall.
,
14
, pp.
87
98
.
42.
Jackson
,
P. J.
, and
Basinski
,
Z. S.
,
1967
, “
Latent Hardening and the Flow Stress in Copper Single Crystal
,”
Can. J. Phys.
,
45
, p.
421
421
.
43.
Franciosi, P., 1978, “Plasticite´ a` froid des monocristaux C.F.C.: Etude du Durcissement Latent,” The`se d’e´tat, Univ. of Paris XIII.
44.
Dingli
,
J. P.
,
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
2000
, “
Predictions of the Complex Cyclic Behavior of Polycrystals Using a New Self-Consistent Modeling
,”
Int. J. Plast.
,
16
, p.
411
411
.
You do not currently have access to this content.