In this paper, a new and simple boundary element method without internal cells is presented for the analysis of elastoplastic problems, based on an effective transformation technique from domain integrals to boundary integrals. The strong singularities appearing in internal stress integral equations are removed by transforming the domain integrals to the boundary. Other weakly singular domain integrals are transformed to the boundary by approximating the initial stresses with radial basis functions combined with polynomials in global coordinates. Three numerical examples are presented to demonstrate the validity and effectiveness of the proposed method.

1.
Swedlow
,
J. L.
, and
Cruse
,
T. A.
,
1971
, “
Formulation of Boundary Integral Equations for Three-Dimensional Elasto-Plastic Flow
,”
Int. J. Solids Struct.
,
7
, pp.
1673
1683
.
2.
Mukherjee
,
S.
,
1977
, “
Corrected Boundary Integral Equations in Planar Thermo-Elastoplasticity
,”
Int. J. Solids Struct.
,
13
, pp.
331
335
.
3.
Telles
,
J. C. F.
, and
Brebbia
,
C. A.
,
1979
, “
On the Application of the Boundary Element Method to Plasticity
,”
Appl. Math. Model.
,
3
, pp.
466
470
.
4.
Banerjee
,
P. K.
, and
Raveendra
,
S. T.
,
1986
, “
Advanced Boundary Element Analysis of Two- and Three-Dimensional Problems of Elasto-Plasticity
,”
Int. J. Numer. Methods Eng.
,
23
, pp.
985
1002
.
5.
Riccardella, P., 1973, “An Implementation of the Boundary Integral Technique for Planar Problems of Elasticity and Elastoplasticity,” Ph.D thesis, Carnegie-Mellon University, Pittsurgh, PA.
6.
Mendelson, A., and Albers, L. V., 1975, “An Application of the Boundary Integral Equation Method to Elastoplastic Problems,” Proc. ASME Conf. On Boundary Integral Equation Methods, T. A. Cruse and F. J. Rizzo, eds., AMD-Vol. 11, ASME, New York.
7.
Telles, J. C. F., 1983, The Boundary Element Method Applied to Inelastic Problems, Springer-Verlag, Berlin.
8.
Lee
,
K. H.
, and
Fenner
,
R. T.
,
1986
, “
A Quadratic Formulation for Two-Dimensional Elastoplastic Analysis Using the Boundary Integral Equation Method
,”
J. Strain Anal.
,
21
, pp.
159
175
.
9.
Chandra
,
A.
, and
Saigal
,
S.
,
1991
, “
A Boundary Element Analysis of the Axisymmetric Extrusion Process
,”
Int. J. Non-Linear Mech.
,
26
, pp.
1
13
.
10.
Guiggiani
,
M.
,
Krishnasamy
,
G.
,
Rudolphi
,
T. J.
, and
Rizzo
,
F. J.
,
1992
, “
General Algorithm for the Numerical Solution of Hyper-Singular Boundary Integral Equations
,”
ASME J. Appl. Mech.
,
59
, pp.
604
614
.
11.
Daller
,
R.
, and
Kuhn
,
G.
,
1993
, “
Efficient Evaluation of Volume Integrals in Boundary Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
109
, pp.
95
109
.
12.
Okada
,
H. O.
, and
Atluri
,
S. N.
,
1994
, “
Recent Developments in the Field-Boundary Element Method for Finite/Small Strain Elastoplasticity
,”
Int. J. Solids Struct.
,
31
, pp.
1737
1775
.
13.
Huber
,
O.
,
Dallner
,
R.
,
Partheymuller
,
P.
, and
Kuhn
,
G.
,
1996
, “
Evaluation of the Stress Tensor in 3-D Elastoplasticity Direct Solving of Hypersingular Integrals
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
2555
2573
.
14.
Aliabadi
,
M. H.
, and
Martin
,
D.
,
2000
, “
Boundary Element Hyper-Singular Formulation for Elastoplastic Contact Problems
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
995
1014
.
15.
Gao
,
X. W.
, and
Davies
,
T. G.
,
2000
, “
An Effective Boundary Element Algorithm for 2D and 3D Elastoplastic Problems
,”
Int. J. Solids Struct.
,
37
, pp.
4987
5008
.
16.
Gao, X. W., and Davies, T. G., 2001, Boundary Element Programming in Mechanics, Cambridge University Press, Cambridge, UK.
17.
Nardini, D., and Brebbia, C. A., 1982, “A New Approach for Free Vibration Analysis Using Boundary Elements,” Boundary Element Methods in Engineering, C. A. Brebbia, ed., Springer, Berlin, pp. 312–326.
18.
Partridge, P. W., Brebbia, C. A., and Wrobel, L. C., 1992, The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton, UK.
19.
Zhu
,
S.
, and
Zhang
,
Y.
,
1994
, “
Improvement on Dual Reciprocity Boundary Element Method for Equations With Convective Terms
,”
Commun. Numer. Meth. Eng.
,
10
, pp.
361
371
.
20.
Golberg
,
M. A.
,
Chen
,
C. S.
, and
Bowman
,
H.
,
1999
, “
Some Recent Results and Proposals for the Use of Radial Basis Functions in the BEM
,”
Eng. Anal. Boundary Elem.
,
23
, pp.
285
296
.
21.
Power
,
H.
, and
Mingo
,
R.
,
2000
, “
The DRM Subdomain Decomposition Approach to Solve the Two-Dimensional Navier-Stokes System of Equations
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
107
119
.
22.
Cheng
,
A. H. D.
,
Young
,
D. L.
, and
Tsai
,
C. C.
,
2000
, “
Solution of Poisson’s Equation by Iterative DRBEM Using Compactly Supported, Positive Definite Radial Basis Function
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
549
557
.
23.
Sensale
,
B.
,
Partridge
,
P. W.
, and
Creus
,
G. J.
,
2001
, “
General Boundary Elements Solutions for Ageing Viscoelastic Structures
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
1455
1468
.
24.
Henry
,
D. P.
, and
Banerjee
,
P. K.
,
1988
, “
A New Boundary Element Formulation for Two- and Three-Dimensional Elastoplasticity Using Particular Integrals
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
2079
2096
.
25.
Kane, J. H., 1994, Boundary Element Analysis in Engineering Continuum Mechanics, Prentice-Hall, Englewood Cliffs, NJ.
26.
Ochiai
,
Y.
, and
Kobayashi
,
T.
,
1999
, “
Initial Stress Formulation for Elastoplastic Analysis by Improved Multiple-Reciprocity Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
23
, pp.
167
173
.
27.
Banerjee, P. K., and Davies, T. G., 1984, “Advanced Implementation of the Boundary Element Methods for Three-Dimensional Problems of Elasto-Plasticity,” Developments in Boundary Element Methods, Elsevier, London.
28.
Partridge
,
P. W.
, and
Sensale
,
B.
,
1997
, “
Hybrid Approximation Functions in the Dual Reciprocity Boundary Element Method
,”
Commun. Numer. Meth. Eng.
,
13
, pp.
83
94
.
29.
Golberg
,
M. A.
,
Chen
,
C. S.
, and
Karur
,
S. R.
,
1996
, “
Improved Multiquadric Approximation for Partial Differential Equations
,”
Eng. Anal. Boundary Elem.
,
18
, pp.
9
17
.
30.
Partridge
,
P. W.
,
2000
, “
Towards Criteria for Selecting Approximation Functions in the Dual Reciprocity Method
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
519
529
.
31.
Fox, E. N., 1948, “The Mean Elastic Settlement of a Uniformly Loaded Area at a Depth Below the Ground Surface,” Proc. 2nd Int. Conf. Soil Mechanics and Foundation Engng., Vol. 1, FNDN, p. 129.
You do not currently have access to this content.