By using the crack analogue model of rigid flat-ended contact, crack initiation in fretting fatigue is analyzed. The coefficient of friction at the edge of contact, which characterizes the asymptotic stress field, is considered as the primary controlling parameter in the process. Meanwhile, the maximum tangential stress criterion and the maximum shear stress criterion are used to predict opening-mode and shear-mode crack initiations, respectively. By examining the model prediction and comparing it with experimental observations, it is shown that the observed microcracks at the small angles to a fretting surface were nucleated in shear mode in the early stage of tests with a smooth initial surface, while the microcracks at the large angles were nucleated in opening mode in the later stage with a rough worn surface. This understanding may help to establish the sequential damage mechanisms in the complex process of fretting fatigue.

1.
Dobromirski, J. M., 1992, “Variables of Fretting Process: Are There 50 of Them?” Standardization of Fretting Fatigue Test Methods and Equipment, ASTM STP 1159, M. Helmi Attia and R. B. Waterhouse, eds., American Society for Testing and Materials, Philadelphia, pp. 60–66.
2.
Nishioka
,
K.
, and
Hirakawa
,
K.
,
1969
, “
Fundamental Investigations of Fretting Fatigue: Part 2
,”
Bull. JSME
,
12
, pp.
189
287
.
3.
Antoniou
,
R. A.
, and
Radtke
,
T. C.
,
1997
, “
Mechanisms of Fretting-Fatigue of Titanium Alloys
,”
Mater. Sci. Eng.
,
A237
, pp.
229
240
.
4.
Waterhouse
,
R. B.
, and
Taylor
,
D. E.
,
1971
, “
The Initiation of Fatigue Cracks in a 0.7% Carbon Steel by Fretting
,”
Wear
,
17
, pp.
139
147
.
5.
Lamacq
,
V.
,
Dubourg
,
M.-C.
, and
Vincent
,
L.
,
1996
, “
Crack Path Prediction Under Fretting Fatigue—A Theoretical and Experimental Approach
,”
ASME J. Tribol.
,
118
, pp.
711
720
.
6.
Wharton
,
M. H.
,
Taylor
,
D. E.
, and
Waterhouse
,
R. B.
,
1973
, “
Metallurgical Factors in the Fretting-Fatigue Behavior of 70/30 Brass and 0.7% Carbon Steel
,”
Wear
,
23
, pp.
251
260
.
7.
Endo
,
K.
, and
Goto
,
H.
,
1976
, “
Initiation and Propagation of Fretting Fatigue Cracks
,”
Wear
,
38
, pp.
311
324
.
8.
Tanaka
,
K.
,
Mutoh
,
Y.
,
Sakoda
,
S.
, and
Leadbeater
,
G.
,
1985
, “
Fretting Fatigue in 0.55c Spring Steel and 0.45c Carbon Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
8
, pp.
129
142
.
9.
Nix
,
K. J.
, and
Lindley
,
T. C.
,
1985
, “
The Application of Fracture Mechanics to Fretting Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
8
, pp.
143
160
.
10.
Sato
,
K.
,
Fujii
,
H.
, and
Kodama
,
S.
,
1986
, “
Crack Propagation Behavior in Fretting Fatigue
,”
Wear
,
107
, pp.
245
262
.
11.
Hills
,
D. A.
,
Nowell
,
D.
, and
O’Connor
,
J. J.
,
1988
, “
On the Mechanics of Fretting Fatigue
,”
Wear
,
125
, pp.
129
146
.
12.
Faanes
,
S.
,
1995
, “
Inclined Cracks in Fretting Fatigue
,”
Eng. Fract. Mech.
,
52
, pp.
71
82
.
13.
Lamacq
,
V.
,
Dubourg
,
M.-C.
, and
Vincent
,
L.
,
1997
, “
A Theoretical Model for the Prediction of Initial Growth Angles and Sites of Fretting Fatigue Cracks
,”
Tribol. Int.
,
30
, pp.
391
400
.
14.
Kim
,
Hyung-Kyu
, and
Lee
,
Soo-Bok
,
1997
, “
Crack Initiation and Growth Behavior of Al 2024-T4 Under Fretting Fatigue
,”
Int. J. Fatigue
,
19
, pp.
243
251
.
15.
Ruiz
,
C.
,
Boddington
,
P. H. B.
, and
Chen
,
K. C.
,
1984
, “
An Investigation of Fatigue and Fretting in a Dovetail Joint
,”
Exp. Mech.
,
24
, pp.
208
217
.
16.
Cheng
,
W.
,
Cheng
,
H. S.
,
Mura
,
T.
, and
Keer
,
L. M.
,
1994
, “
Micromechanics Modeling of Crack Initiation Under Contact Fatigue
,”
ASME J. Tribol.
,
116
, pp.
2
8
.
17.
Szolwinski
,
Matthew P.
, and
Farris
,
Thomas N.
,
1996
, “
Mechanics of Fretting Fatigue Crack Formulation
,”
Wear
,
198
, pp.
93
107
.
18.
Fellows
,
L. J.
,
Nowell
,
D.
, and
Hills
,
D. A.
,
1997
, “
On the Initiation of Fretting Fatigue Cracks
,”
Wear
,
205
, pp.
120
129
.
19.
Giannakopoulos
,
A. E.
,
Lindley
,
T. C.
, and
Suresh
,
S.
,
1998
, “
Aspects of Equivalence Between Contact Mechanics and Fracture Mechanics: Theoretical Connections and Life-Prediction Methodology for Fretting-Fatigue
,”
Acta Mater.
,
46
, pp.
2955
2968
.
20.
Giannakopoulos
,
A. E.
,
Venkatesh
,
T. A.
,
Lindley
,
T. C.
, and
Suresh
,
S.
,
1999
, “
The Role of Adhesion in Contact Fatigue
,”
Acta Mater.
,
47
, pp.
4653
4664
.
21.
Hills, D. A., Nowell, D., and Sackfield, A., 1993, Mechanics of Elastic Contacts, Butterworth-Heinemann Ltd., Oxford, UK.
22.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
, pp.
109
114
.
23.
Nowell
,
D.
, and
Hills
,
D. A.
,
1987
, “
Mechanics of Fretting Fatigue Tests
,”
Int. J. Mech. Sci.
,
29
, pp.
355
365
.
24.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
J. Basic Eng.
,
91
, pp.
764
769
.
25.
Wu
,
C. H.
,
1978
, “
Fracture Under Combined Loads by Maximum Energy Release Rate Criterion
,”
ASME J. Appl. Mech.
,
45
, pp.
553
558
.
26.
Palaniswamy, K., and Knauss, W. G., 1978, “On the Problem of Crack Extension in Brittle Solids Under General Loading,” Mechanics Today, S. Nemat-Nasser, ed., Pergamon, New York, pp. 87–148.
27.
Sih
,
G. C.
,
1974
, “
Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems
,”
Int. J. Fract.
,
10
, pp.
305
321
.
28.
Nuismer
,
R. J.
,
1975
, “
An Energy Release Rate Criterion for Mixed Mode Fracture
,”
Int. J. Fract.
,
11
, pp.
245
250
.
29.
Shen
,
Minsheng
, and
Shen
,
M.-H. Herman
,
1995
, “
Direction of Crack Extension Under General Plane Loading
,”
Int. J. Fract.
,
70
, pp.
51
58
.
30.
Theocaris
,
P. S.
, and
Andrianopoulos
,
N. P.
,
1984
, author’s closure on the discussion by G. C. Sih and E. E. Gdoutos of “
The Mises Elastic-Plastic Boundary as the Core Region in Fracture Criteria
,”
Eng. Fract. Mech.
,
20
, pp.
691
694
.
31.
Qian
,
J.
, and
Fatemi
,
A.
,
1996
, “
Mixed Mode Fatigue Crack Growth: A Literature Survey
,”
Eng. Fract. Mech.
,
55
, pp.
969
990
.
32.
Otsuka
,
A.
,
Mori
,
K.
, and
Miyata
,
T.
,
1975
, “
The Condition of Fatigue Crack Growth in Mixed Mode Condition
,”
Eng. Fract. Mech.
,
7
, pp.
429
439
.
33.
Shen
,
B.
,
1995
, “
The Mechanism of Fracture Coalescence in Compression—Experimental Study and Numerical Simulation
,”
Eng. Fract. Mech.
,
51
, pp.
73
85
.
34.
Shen
,
B.
, and
Stephansson
,
O.
,
1994
, “
Modification of the G-Criterion for Crack Propagation Subjected to Compression
,”
Eng. Fract. Mech.
,
47
, pp.
177
189
.
35.
Cotterell
,
B.
, and
Rice
,
J. R.
,
1980
, “
On a Slightly Curved or Kinked Crack
,”
Int. J. Fract.
,
16
, pp.
155
169
.
36.
Rice
,
J. R.
,
1974
, “
Limitations to the Small-Scale Yielding Approximation for Crack-Tip Plasticity
,”
J. Mech. Phys. Solids
,
22
, pp.
17
26
.
You do not currently have access to this content.