The classic Sherman-Lauricella integral equation and an integral equation due to Muskhelishvili for the interior stress problem are modified. The modified formulations differ from the classic ones in several respects: Both modifications are based on uniqueness conditions with clear physical interpretations and, more importantly, they do not require the arbitrary placement of a point inside the computational domain. Furthermore, in the modified Muskhelishvili equation the unknown quantity, which is solved for, is simply related to the stress. In Muskhelishvili’s original formulation the unknown quantity is related to the displacement. Numerical examples demonstrate the greater stability of the modified schemes. [S0021-8936(00)01304-0]
Issue Section:
Technical Papers
1.
Sherman
, D. I.
, 1940
, “Sur la Solution du Second Proble`me Fondamental de la The´orie Statique Plane de l’E´lasticite´
,” Comptes Rendus (Doklady) l’Acad. Sci. l’URSS
, 28
, pp. 25
–32
.2.
Muskhelishvili, N. I., 1953, Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff, Ltd., Groningen.
3.
Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, McGraw-Hill, New York.
4.
Mikhlin, S. G., 1957, Integral equations, Pergamon Press, London.
5.
Parton, V. Z., and Perlin, P. I., 1982, Integral Equation Methods in Elasticity, MIR, Moscow.
6.
Lauricella
, G.
, 1909
, “Sur l’Inte´gration de l’E´quation Relative a` l’E´quilibre des Plaques E´lastiques Encastre´es
,” Acta Math.
, 32
, pp. 201
–256
.7.
Greenbaum
, A.
, Greengard
, L.
, and Mayo
, A.
, 1992
, “On the Numerical Solution of the Biharmonic Equation in the Plane
,” Physica D
, 60
, pp. 216
–225
.8.
Greengard
, L.
, Kropinski
, M. C.
, and Mayo
, A.
, 1996
, “Integral Equation Methods for Stokes Flow and Isotropic Elasticity in the Plane
,” J. Comput. Phys.
, 125
, pp. 403
–414
.9.
Strandberg, M., 1999, “A Numerical Study of the Stress Fields Arising From Sharp and Blunt V-Notches in a SENT-Specimen,” Int. J. Fract., in press.
10.
Saad
, Y.
, and Schultz
, M. H.
, 1986
, “GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems
,” SIAM J. Sci. Stat. Comput.
, 7
, pp. 856
–869
.11.
Kahan
, W.
, 1965
, “Further Remarks on Reducing Truncation Errors
,” Commun. ACM
, 8
, p. 40
40
.12.
Higham, N. J., 1996, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, pp. 92–97.
13.
Helsing, J., and Jonsson, A., 1999, “Elastostatics for Plates With Holes,” Department of Solid Mechanics KTH report 99-250.
Copyright © 2000
by ASME
You do not currently have access to this content.