The initiation and propagation of Lu¨ders-type localized deformation in thin, fine grained steel strips in tension is studied through combined experimental and analytical efforts. Purely elastic deformation is terminated (upper yield stress) by localized deformation which tends to initiate along preferred directions. The strain level associated with this material instability is limited to two to five percent. When this strain level is achieved locally, the instability propagates via inclined fronts which separate coexisting regions of essentially elastic and plastically deformed materials. Under displacement controlled stretching, one or two fronts propagate in a steady-state manner (lower yield stress). The propagation of one and two fronts are simulated numerically using finite element models in which the material is modeled as a finitely deforming elastoplastic solid with an up-down-up nominal stress-strain response. The simulations capture the major events observed in the experiments such as the initiation process, the propagation of inclined fronts, kinking of the strip and the build up of moments, and the periodic straightening and moment reduction through transient events. This confirms that structural effects play a major role in the evolution of observed events. [S0021-8936(00)01604-4]
On the Propagation of Lu¨ders Bands in Steel Strips
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received and accepted by the ASME Applied Mechanics Division, Apr. 18, 2000. Associate Technical Editor: L. T. Wheeler. Discussion on the paper should be addressed to the Technical Editor, Professor Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Kyriakides, S., and Miller, J. E. (April 18, 2000). "On the Propagation of Lu¨ders Bands in Steel Strips ." ASME. J. Appl. Mech. December 2000; 67(4): 645–654. https://doi.org/10.1115/1.1328348
Download citation file: