Grain boundaries are susceptible to cause boundary corrosion, cracking, and creep deformation. Single crystals are presently used in turbine engines. A micromechanic analysis is shown to explain the occurrence of highly localized plastic strain in the slip band known as the shear band in metals under a monotonic loading. Based on the prior analyses of fatigue bands in polycrystals, a micromechanic analysis of a single crystal under plane deformation is developed. The Bauschinger effect and hysteresis loops of these single crystals were calculated and shown. The calculated results agree generally with experimental observations. [S0021-8936(00)02202-9]

1.
Walker, K. P., and Jordan, E. M., 1989, “Biaxial Constitutive Modeling and Testing of a Single Crystal Superalloy at Elevated Temperatures,” Biaxial and Multiaxial Fatigue, EGF3,” M. W. Brown and K. J. Miller, eds., Mechanical Engineering Publication, London, pp. 145–170.
2.
Lin
,
T. H.
,
1992
, “
Micromechanics of Crack Initiation in High-Cyclic Fatigue
,”
Adv. Appl. Mech.
,
29
, pp.
1
62
.
3.
Forsyth
,
P. J. E.
, and
Stubbington
,
C. A.
,
1955
, “
The Slip Band Extrusion Effect Observed in Some Aluminum Alloys Subjected to Cyclic Stresses
,”
J. Inst. Met.
,
83
, p.
395
395
.
4.
Essmann
,
V.
,
Gossel
,
V.
, and
Mughrabi
,
H.
,
1981
, “
A Model of Extrusions and Intrusions in Fatigued Metals I—Point Defect Production and the Growth of Extrusions
,”
Philos. Mag. A
,
44
, pp.
405
426
.
5.
Mughrabi, H., Wang, R., Differt, K., and Essmann, V., 1983, “Fatigue Crack Initiation by Cyclic Slip Irreversibilities in High-Cycle Fatigue,” Fatigue Mechanism, STM-STP-811, pp. 5–45.
6.
Lin
,
T. H.
,
Lin
,
S. R.
, and
Wu
,
X. Q.
,
1989
, “
Micromechanics of an Extrusion in High-Cyclic Fatigue
,”
Philos. Mag. A
,
59
, pp.
1263
1276
.
7.
Zhai
,
T.
,
Briggs
,
G. A. D.
, and
Matin
,
J. W.
,
1996
, “
Fatigue Damage at Room Temperature in Aluminum Single Crystals IV: Secondary Slip
,”
Acta Mater.
,
44
, pp.
3489
3496
.
8.
Wood
,
W. A.
, and
Bendler
,
A. M.
,
1962
, “
The Fatigue Process in Copper as Studies by Electron Metallography
,”
Trans. Metall. Soc. AIME
,
244
, pp.
180
186
.
9.
Wood, W. A., 1956, “Mechanisms of Fatigue,” Fatigue in Aircraft Structure, A. M. Freudenthal, ed., Academic Press, New York, pp. 1–19.
10.
Lin, T. H., 1968, Theory of Inelastic Structures, John Wiley and Sons, New York.
11.
Mecke
,
K.
, and
Blockwitz
,
C.
,
1980
, “
Internal Displacement of Persistent Slip Bands in Cyclically Deformed Nickle Single Crystals
,”
Phys. Status Solidi A
,
64
, pp.
K5–K7
K5–K7
.
12.
Basinski
,
Z. S.
,
Pascual
,
R.
, and
Bainski
,
S. J.
,
1983
, “
Low Amplitude Fatigue of Copper Single Crystals I—The Role of the Surface in Fatigue Failure
,”
Acta Metall.
,
31
, pp.
591
602
.
13.
Basinski
,
Z. S.
, and
Bainski
,
S. J.
,
1985
, “
Low Amplitude Fatigue of Copper Single Crystals II—PSB Sections
,”
Acta Metall.
,
33
, pp.
1319
1327
.
14.
Zhai
,
T.
,
Lin
,
S.
, and
Xiao
,
J. M.
,
1990
, “
Influence on Non-Geometric Effect of PSB on Crack Initiation in Aluminum Single Crystal
,”
Acta Metall. Mater.
,
38
, pp.
1687
1692
.
15.
Zhai
,
T.
,
Matin
,
J. W.
, and
Briggs
,
G. A. D.
,
1995
, “
Fatigue Damage at Room Temperature in Aluminum Single Crystals I: On the Surface Containing the Slip Burger’s Vector
,”
Acta Metall. Mater.
,
43
, pp.
3813
3825
.
16.
Thompson
,
N.
, and
Wadsworth
,
N. J.
,
1958
, “
Metal Fatigue
,”
Adv. Phys.
,
7
, pp.
72
170
.
17.
Kennedy, A. J., 1963, Process of Creep and Fatigue of Metals, John Wiley and Sons, New York.
18.
Thompson
,
N.
,
Coogan
,
C. K.
, and
Rider
,
J. R.
,
1955
, “
Experiments on Aluminum Crystals Subjected to Slowly Alternating Stresses
,”
J. Inst. Met.
,
84
, pp.
73
80
.
You do not currently have access to this content.