This paper investigates the nonlinear dynamic response of a linearly elastic string fixed at one boundary and undergoing constant speed circular motion at the other boundary. The response divides into nonlinear steady-state ballooning that is fixed relative to a rotating coordinate system and linearized vibration about the steady state. Single-loop balloons have high tension and purely imaginary eigenvalues. The single-loop vibration frequencies generally decrease with increasing balloon length. Highly extensible strings whirl in first and higher modes with forward whirling modes having lower frequencies. Axially stiff strings exhibit whirling only in higher modes. If the nondimensional string stiffness is larger than 1000, then the inextensible steady-state solutions and the lowest six vibration frequencies match the extensible results to within three percent. One-and-a-half loop balloons are divergently unstable. Long and/or sufficiently extensible strings form low-tension double-loop balloons. Inextensible double balloons are coupled mode flutter unstable. The steady-state balloons, steady-state eyelet tension, and balloon stability are experimentally verified.

1.
Ames
W. F.
,
Lee
S. Y.
, and
Zaiser
J. N.
,
1968
, “
Non-Linear Vibration of a Traveling Threadline
,”
Int. J. Non-Linear Mechanics
, Vol.
3
, pp.
449
469
.
2.
Antman, S. S., 1995, Nonlinear problems of elasticity, Springer-Verlag, New York.
3.
Batra
S.
,
Ghosh
T.
, and
Zeidman
M.
,
1989
a, “
An Integrated Approach to Dynamic Analysis of the Ring Spinning Process—I
,”
Textile Research Journal
, Vol.
59
, pp.
309
317
.
4.
Batra
S.
,
Ghosh
T.
, and
Zeidman
M.
,
1989
b, “
An Integrated Approach to Dynamic Analysis of the Ring Spinning Process—II
,”
Textile Research Journal
, Vol.
59
, pp.
416
424
.
5.
De Barr, A., and Catling, H. M., 1965, The principles and theory of ring spinning. Manual of cotton spinning, Vol. 5, F. Charnley and P. Harrison, eds. Butterworths, London.
6.
Fraser
W.
,
Ghosh
T.
, and
Batra
S.
,
1992
, “
On Unwinding Yarn From a Cylindrical Package
,”
Proc. R. Soc. Lond
., Vol.
A436
, pp.
479
498
.
7.
Fraser
W.
,
1993
, “
On the Theory of Ring Spinning
,”
Phil. Trans. R. Soc. Lond
., Vol.
A342
, pp.
439
468
.
8.
Hall
K. J.
,
Zhu
F.
, and
Rahn
C.
,
1995
, “
Three Dimensional Vibration of a Ballooning String
,”
ASME Design Engineering Technical Conferences
, Vol.
3
, Part B, pp.
1411
1418
.
9.
Healey
T. J.
,
1990
, “
Stability and Bifurcation of Rotating Nonlinear Elastic Loops
,”
Quarterly of Applied Mathematics
, Vol.
48
, pp.
679
698
.
10.
Healey
T. J.
,
1990
, “
Large Rotating States of a Conducting Elastic Wire in a Magnetic Field: Subtle Symmetry and Multiparameter Bifurcation
,”
Journal of Elasticity
, Vol.
24
, pp.
211
227
.
11.
Kolodner
I. I.
,
1955
, “
Heavy Rotating String—A Nonlinear Eigenvalue Problem
,”
Comm. Pure Appl. Math.
, Vol.
8
, pp.
394
408
.
12.
O’Reilly
O. M.
,
1996
, “
Steady Motions of a Drawn Cable
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
63
, pp.
180
189
.
13.
Soedel
S. M.
, and
Soedel
W.
,
1989
, “
Free and Forced Vibrations of an Eccentrically Rotating String on a Viscoelastic Foundation
,”
Journal of Sound and Vibration
, Vol.
135
, pp.
197
212
.
14.
Shih
L. Y.
,
1975
, “
Motion of Elliptic Ballooning for a Traveling String
,”
Int. J. Non-Linear Mechanics
, Vol.
10
, pp.
183
191
.
15.
Stuart
C. A.
,
1975
, “
Spectral Theory of Rotating Chains
,”
Proc. Roy. Soc. Edinburgh, Sect. A
, Vol.
73
, pp.
199
214
.
16.
Stump
M.
, and
Fraser
W.
,
1996
, “
Transient Solutions of the Ring-Spinning Balloon Equations
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
63
, pp.
523
528
.
17.
Wickert
J.
, and
Mote
C.
,
1990
, “
Classical Vibration Analysis of Axially-Moving Continua
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
57
, pp.
738
744
.
18.
Yang
L.
, and
Hutton
S. G.
,
1995
, “
Interactions Between an Idealized Rotating String and Stationary Constraints
,”
Journal of Sound and Vibration
, Vol.
185
, pp.
139
154
.
This content is only available via PDF.
You do not currently have access to this content.