The paper analyzes the elastic fields caused by an elliptic inclusion which undergoes a uniform expansion. The interface between the inclusion and the matrix cannot sustain shear tractions and is free to slip. Papkovich–Neuber displacement potentials are used to solve the problem. In contrast to the perfectly bonded interface, the solution cannot be expressed in closed form and involves infinite series. The results are illustrated by numerical examples.

This content is only available via PDF.
You do not currently have access to this content.