Abstract
In this paper a study is made of the problem of the central impact of a mass on a simply supported beam on an elastic foundation with considerations of internal and external damping. The differential equation for the forced vibration of the beam is developed. It is solved for the case in which the force is a function of time and is concentrated at the center of the beam. Formulas are obtained for the deflections. An expression is developed for the coefficient of restitution which is essential in determining the deflections and the strains. Criteria are devised for determining the cases in which the beam may be considered as a single-degree-of-freedom system when damping and an elastic foundation are considered. The importance of these criteria is discussed. A numerical example illustrating the theory developed in the paper is worked out in detail. Results of computations for several numerical solutions are given in tabular form.