Aerospace mechanical structures encounter various forms of damage throughout their operation due to mechanical stimuli. Structural health monitoring (SHM) is suggested as a way to actively check the integrity of a component by using a system of sensors. However, these conventional sensors can often require external power that is not always readily available in aerospace, thus the development of self-powered sensors could prove beneficial for SHM applications. In this study, the design of multifunctional mechano-luminescent-optoelectronic (MLO) composites strain sensor is suggested. The MLO composites sensor is composed of two transformative materials: 1) mechano-luminescent (ML) copper-doped zinc sulfide (ZnS:Cu) and 2) mechano-optoelectronic (MO) poly(3-hexylthiophene) (P3HT). ML ZnS:Cu emits light in response to mechanical stimuli. MO P3HT showed self-sensing capability by generating direct current (DC) sensor signal under light. First, ZnS:Cu ML crystals will be embedded in polydimethylsiloxane (PDMS) matrix to fabricate ZnS:Cu/PDMS elastomeric composites. ML light emission characteristics of ZnS:Cu/PDMS will be studied by subjecting the ZnS:Cu/PDMS to cyclic tensile strain loadings while videos are recorded of the light emission. The data are analyzed using a statistical factorial methodology so that a regression model to predict light emission based on loading strain and frequency can be calculated. Second, MO P3HT-based self-sensing thin films will be fabricated on glass slides using a spin-coating technique. Last, self-powered sensing capability of the MLO composites strain sensor will be validated by measuring DC voltage (DCV) in close proximity of the ZnS:Cu/PDMS subjected to cyclic tensile loadings.
Skip Nav Destination
ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 18–20, 2017
Snowbird, Utah, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5826-4
PROCEEDINGS PAPER
Multifunctional Mechano-Luminescent-Optoelectronic Composites for Self-Powered Strain Sensing
Donghyeon Ryu
Donghyeon Ryu
New Mexico Tech, Socorro, NM
Search for other works by this author on:
Elias Pulliam
New Mexico Tech, Socorro, NM
George Hoover
New Mexico Tech, Socorro, NM
Donghyeon Ryu
New Mexico Tech, Socorro, NM
Paper No:
SMASIS2017-3977, V002T05A010; 9 pages
Published Online:
November 9, 2017
Citation
Pulliam, E, Hoover, G, & Ryu, D. "Multifunctional Mechano-Luminescent-Optoelectronic Composites for Self-Powered Strain Sensing." Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring. Snowbird, Utah, USA. September 18–20, 2017. V002T05A010. ASME. https://doi.org/10.1115/SMASIS2017-3977
Download citation file:
25
Views
0
Citations
Related Proceedings Papers
Related Articles
Structural Health Monitoring of Glass/Epoxy Composite Plates Using PZT and PMN-PT Transducers
J. Eng. Mater. Technol (January,2011)
Experimental Validation of Transient Spectral Finite Element Simulation Tools Dedicated to Guided Wave-Based Structural Health Monitoring
ASME J Nondestructive Evaluation (November,2021)
Piezoelectric Wafer Active Sensors for Structural Health Monitoring of Composite Structures Using Tuned Guided Waves
J. Eng. Mater. Technol (October,2011)
Related Chapters
Insulating Properties of W-Doped Ga2O3 Films Grown on Si Substrate for Low-K Applications
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Introduction
Computer Vision for Structural Dynamics and Health Monitoring
Achievements, Challenges, and Opportunities
Computer Vision for Structural Dynamics and Health Monitoring