Transducers based on dielectric electroactive polymers (DEAP) offer an attractive balance of work density and electromechanical efficiency. For example in automation and haptic applications, especially multilayer transducers are used to scale up their absolute deformation and force. Depending on the application different transducer controls have to be realized to match the specifications of the particular application. However, analogous to conventional electromechanical drive systems an inner sensor-less force control can be realized for DEAP transducers, too. For this force control the nonlinear relations between voltage and electrostatic pressure as well as the electromechanical coupling have to be considered. The resulting open-loop force control can be used for superimposed motion controls, such as position, vibration and impedance controls. Therefore, within this contribution the authors propose a model-based feedforward force control based on an overall model of the transducer that does not require any force measurement. Finally, the derived open-loop force control interface is experimentally validated using in-house developed DEAP stack-transducers and driving power electronics.

This content is only available via PDF.
You do not currently have access to this content.