Many structural damage detection methods utilize piezoelectric sensors. While these sensors are efficient in supporting many structural health monitoring (SHM) methodologies, there are a few key disadvantages limiting their use. The disadvantages include the brittle nature of piezoceramics and their dependence of diagnostic results on the quality of the adhesive used in bonding the sensors. One viable alternative is the utilization of Magneto-Elastic Active Sensors (MEAS). Instead of mechanically creating elastic waves, MEAS induce eddy currents in the host structure which, along with an applied magnetic field, generate mechanical waves via the Lorentz force interaction. Since elastic waves are generated electromagnetically, MEAS do not require direct bonding to the host structure and its elements are not as fragile as PWAS. This work explores the capability of MEAS to detect damage in aluminum alloy. In particular, methodologies of detecting fatigue cracks in thin plates were explored. Specimens consisted of two identical aluminum plates featuring a machined slot to create a stress riser for crack formation. One specimen was subjected to cyclic fatigue load. MEAS were used to transmit elastic waves of different characteristics in order to explore several SHM methodologies. Experiments have shown that the introduction of fatigue cracks created measurable amplitude changes in the waves passing through the fatigued region of the aluminum plate. The phase indicated sensitivity to load conditions, but manifestation in the cracked region lacked stability. Nonlinear effects were studied using plate thickness resonance, which revealed birefringence due to local stresses at the site of the fatigue crack. The resonance spectrum has also shown a frequency decrease apparently due to stiffness loss. Preliminary results suggest opportunities for fatigue damage detection using MEAS. Application of MEAS for the diagnosis of complex structures is currently being investigated.

This content is only available via PDF.
You do not currently have access to this content.