Flexibly supported two-degrees of freedom (2-DOF) airfoil in two-dimensional (2D) incompressible viscous turbulent flow subjected to a gust (sudden change of flow conditions) is considered. The structure vibration is described by two nonlinear ordinary differential equations of motion for large vibration amplitudes. The flow is modeled by Reynolds averaged Navier-Stokes equations (RANS) and by kω turbulence model. The numerical simulation consists of the finite element (FE) solution of the RANS equations and the equations for the turbulent viscosity. This is coupled with the equations of motion for the airfoil by a strong coupling procedure. The time dependent computational domain and a moving grid are taken into account with the aid of the arbitrary Lagrangian-Eulerian formulation. In order to avoid spurious numerical oscillations, the SUPG and div-div stabilizations are applied. The solution of the ordinary differential equations is carried out by the Runge-Kutta method. The resulting nonlinear discrete algebraic systems are solved by the Oseen iterative process. The aeroelastic response to a sudden gust is numerically analyzed with the aid of the developed FE code. The gust responses exhibit similar oscillations as those found in literature.

This content is only available via PDF.
You do not currently have access to this content.