Abstract

As commercial nuclear power plants (NPPs) pursue extended plant operations in the form of Second License Renewals (SLRs), opportunities exist for these plants to provide capital investments to ensure long-term, safe, and economic performance. Several utilities have already announced their intention to pursue extended operations for one or more of their NPPs via SLR2. The goal of this research is to develop a risk-informed approach to evaluate and prioritize plant capital investments made in preparation for, and during the period of, extended plant operations to support decisions in NPP operations. In order to prioritize project selection via a risk-informed approach we developed a single decision-making tool that integrates safety/reliability, cost, and stochastic optimization models to provide users with data analysis capabilities to more cost effectively manage plant assets. Both stochastic analysis methods — such as Monte Carlo-based sampling strategies — and multi-stage stochastic optimization strategies are employed to provide priority lists to decision-makers in support of risk-informed decisions. We applied the proposed method to a trial application of projected replacement/refurbishment expenditures for plant capital assets (i.e., structures, systems, and components [SSCs]). The objective is to optimize the SSC replacement/refurbishment schedule in terms of economic constraints, data uncertainties, and SSC reliability data, as well to generate a priority list for maximizing returns on investment.

This content is only available via PDF.
You do not currently have access to this content.