Abstract

In present study, two-dimensional numerical simulations have been carried out to investigate scour beneath a piggyback pipeline subjected to a subsea boundary layer flow using SedFoam (an open-source multi-dimensional Eulerian two-phase solver for sediment transport based on OpenFOAM). In the piggyback configuration, a small pipeline is attached on the upstream and downstream sides of a large pipeline. This form of piggyback can reduce the scour depth beneath the pipeline (Yang et al., 2019). In the solver, the turbulence Reynolds stress is resolved using a two-phase modified k-ε model. The particle stresses caused by the binary collisions and contacts are modeled by the kinetic theory for granular flow and a phenomenological frictional model, respectively. The effects of the locations of the small pipelines attached on the large pipeline on the scour and the surrounding flow field are discussed.

This content is only available via PDF.
You do not currently have access to this content.