As offshore pipeline projects have expanded to deeper water regions with depths of more than 2 000 m, higher resistance against collapse by external pressure is now required in linepipe. Collapse resistance is mainly controlled by the pipe geometry and compressive yield strength. In UOE pipe, the compressive yield strength along the circumferential direction changes dramatically due to tensile pre-strain that occurs in pipe forming processes such as the expansion process. In order to improve the compressive yield strength of pipes, it is important to consider the Bauschinger effect caused by pipe expansion. As the mechanism of this effect, it is understood that internal stress is generated by the accumulation of dislocations, and this reduces reverse flow stress. Compressive yield strength is also changed by the thermal cycle associated with application of fusion-bond epoxy in pipe anti-corrosion coating by induction heating. In the typical thermal heat cycle of this coating process, the maximum heating temperature is from 200 °C to 250 °C. In this case, compressive yield strength increases as an effect of the thermal cycle, resulting in increased collapse resistance. Thus, for deep water application of UEO linepipe, it is important to clarify the conflicting effects of the Bauschinger effect and the thermal heat cycle on compressive yield strength. During installation of deep water pipelines by a method such as J-lay, curvature is imposed on the pipe axis, but the circumferential bending that leads to ovalization is determined by the interaction of the curvature of bending deformation. This bending deformation decreases collapse resistance. The interaction of external pressure and bending is also important when evaluating collapse.

Against this background, this study discusses the collapse criteria for coated linepipe and their bending interaction against collapse based on a full-scale collapse test under external pressure with and without bending loading. The effect of the thermal heat cycle on linepipe collapse criteria is also discussed based on the results of tensile pre-strain tests with simulation of the thermal cycle and a collapse calculation by FEA.

This content is only available via PDF.
You do not currently have access to this content.