Abstract

Electronics components operating under extreme thermo-mechanical stresses are often protected with underfills and potting encapsulation to isolate the severe stresses. By encapsulating the entire PCB, the resin provides complete insulation for the unit thereby combining good electrical properties with excellent mechanical protection. In military and defense applications these components are often subjected to mechanical shock loads of 50,000g and are expected to perform with reliability. Due to the bulk of material surrounding the PCB, potting and encapsulation resins are commonly two-part systems which when mixed together form a solid, fully-cured material, with no by-products. The cured potting materials are prone to interfacial delamination under dynamic shock loading which in turn potentially cause failures in the package interconnects. The study of interfacial fracture resistance in PCB/epoxy potting systems under dynamic shock loading is important in mitigating the risk of system failure in mission critical applications. In this paper, three types of epoxy potting compounds were used as an encapsulation on PCB samples. The potting compounds were selected based on their ultimate elongation under quasi-static loading. Potting compound, A is a stiffer material with 5% of ultimate elongation before failure. Potting compound, B is a moderately stiff material with 12% ultimate elongation. Finally, potting compound C is a softer material with 90% ultimate elongation before failure. The fracture properties and interfacial crack delamination of the PCB/epoxy interface were determined using three-point bend loading with a pre-crack at the interface. The fatigue crack growth of the interfacial delamination was characterized for the three epoxy systems. A prediction of number of cycles to failure and the performance of different epoxy system resistance under cyclic bending loading was assessed.

This content is only available via PDF.
You do not currently have access to this content.