Production of hydrogen using solar thermal energy has the potential to be a viable alternative to other hydrogen production methods, typically fossil-fuel driven processes. Thermochemical reactions for splitting water require high temperatures to operate effectively, for which solar is well-suited. Numerical modeling to investigate the concept of a solar-driven reactor for splitting water is presented in detail in this paper for an innovative reactor, known as the “counter-rotating-ring receiver/reactor/recuperator” (CR5) solar thermochemical heat engine that is presently under development. In this paper, details of numerical simulations predicting the thermal/fluid behavior of the innovative solar-driven thermo-chemical reactor are described in detail. These scoping calculations have been used to provide insight into the thermal behavior of the counter-rotating reactor rings and to assess the degree of flow control required for the CR5 concept.

This content is only available via PDF.
You do not currently have access to this content.