The improvement of internal combustion engine is largely accomplished though the introduction of innovative actuators that allow optimization and control of the flow, mixing, and combustion processes. The realization of such a novel system depends on the existence of an operational controller that will stabilize the engine and allow experimental testing which, consequently, leads to further development of the actuator and the engine controller. This iterative process requires a starting point which is the development of a control-oriented model. Although not fully validated, the control-oriented model reveals issues associated with uncertainties, nonlinearities, and limitation of different subsystems. Moreover, it aides in defining the controller structure and the necessary parameters for the calibration of the closed loop system. In this paper (Part I) we describe the development process of a control-oriented model for a camless intake process.

This content is only available via PDF.
You do not currently have access to this content.