Friction and wear of viscoelastic materials like rubbers are topics of extreme practical importance such as the construction of tires, shoe heels and soles, rubber O-ring seals, and wiper blades. Friction of viscoelastic materials differs from the frictional properties of the elastic solids as friction is directly related to energy dissipation via the internal damping of such materials while purely elastic materials do not dissipate energy. Based on hysteresis properties of viscoelastic materials, physics based multiscale models were developed by Persson for fiction [1, 2] and powdery wear [3] of rubbers sliding on rough surfaces. In this research, these theories were studied and the theoretical results were compared with experimental results obtained from a dynamic friction/wear tester. The inputs to the theoretical models were the fractal properties of the rough surface, the dynamic modulus, and the fatigue behavior of the viscoelastic material. The fractal properties of the rough surface was obtained from the 3D profile of the surface measured using an optical profilometer. The dynamic modulus of the rubber samples was characterized via dynamic mechanical analysis at different frequencies and temperatures. The fatigue crack growth behavior of the samples were found from experimental results of crack propagation versus tearing energy obtained from the fatigue test. Then, the friction coefficient between different rubber samples and rough surfaces was calculated as a function of sliding velocity using both analytical model and experimental approach. In the dynamic friction/wear tester, normal force was adjusted and measured accurately, in addition, the frictional force was measured using a load cell in longitudinal direction along the sliding axis. The experimental sliding friction coefficient was calculated as the ratio of longitudinal force at a constant velocity to the normal force. The mass loss of rubber sample was measured by weighting the sample before and after each test to obtain the wear rate. The comparison between experimental and analytical results showed that the friction model could predict the friction coefficient accurately while the theory of powdery wear is unable to capture all the physics involved in rubber wear on rough surfaces.
Skip Nav Destination
ASME 2017 International Mechanical Engineering Congress and Exposition
November 3–9, 2017
Tampa, Florida, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5844-8
PROCEEDINGS PAPER
Comparison of Multiscale Analytical Model of Friction and Wear of Viscoelastic Materials With Experiments
Anahita Emami,
Anahita Emami
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Seyedmeysam Khaleghian,
Seyedmeysam Khaleghian
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Saied Taheri
Saied Taheri
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Anahita Emami
Virginia Tech, Blacksburg, VA
Seyedmeysam Khaleghian
Virginia Tech, Blacksburg, VA
Chuang Su
Virginia Tech, Blacksburg, VA
Saied Taheri
Virginia Tech, Blacksburg, VA
Paper No:
IMECE2017-71537, V009T12A022; 8 pages
Published Online:
January 10, 2018
Citation
Emami, A, Khaleghian, S, Su, C, & Taheri, S. "Comparison of Multiscale Analytical Model of Friction and Wear of Viscoelastic Materials With Experiments." Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Structural Health Monitoring and Prognosis. Tampa, Florida, USA. November 3–9, 2017. V009T12A022. ASME. https://doi.org/10.1115/IMECE2017-71537
Download citation file:
43
Views
0
Citations
Related Proceedings Papers
Related Articles
Investigation of Static and Dynamic Seal Performances of a Rubber O-Ring
J. Tribol (July,2018)
Modeling of Fatigue Crack Propagation During Sliding Wear of Polymers
J. Eng. Mater. Technol (April,2003)
Related Chapters
How the Worm Gear Developed through Time
Design and Application of the Worm Gear
Start-Up, Shutdown, and Lay-Up
Consensus on Pre-Commissioning Stages for Cogeneration and Combined Cycle Power Plants
A Study on Long-Term Seal Durability and Fracture Mode of Rubber O-Ring by High-Pressure Hydrogen Gas Cycles
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions