Thermal protection of components such as turbine blades is often done with thermal barrier coatings which are typically ceramic materials. Methods to manufacture ceramic coatings are being developed to create microstructures that optimize thermal protection without degrading mechanical properties of the coating. The coating requires sufficient mechanical properties to remain in place during loads associated with the operation of the component. The work presented in this paper is part of a broader effort that focuses on novel processing techniques. A fabrication method of interest is the inclusion of spherical micron-sized pores to scatter photons at high temperatures along with nano-sized grains to scatter phonons. Pores are sized and distributed so that mechanical strength is maintained. In the current work, yttria-stabilized zirconia (YSZ) is modeled. Three-dimensional microstructures representing YSZ are computationally generated. The defect sizes and orientations are generated to match an experimentally observed distribution. The defects are either randomly or regularly placed in the microstructural models. Stress-displacement analysis is used to determine effective bulk material properties. Comparisons are made to prior two-dimensional work and to experimental measurements available in the literature as appropriate. The influences that defect distributions and three dimensional effects have on the effective bulk material properties are quantified. This work is a preliminary step toward understanding the impacts that micron sized pores, voids and cracks have on thermal and mechanical characteristics. The goal is to facilitate optimizing the microstructure for thermal protection and strength retention.
Skip Nav Destination
ASME 2017 International Mechanical Engineering Congress and Exposition
November 3–9, 2017
Tampa, Florida, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5835-6
PROCEEDINGS PAPER
Computational Three-Dimensional Microstructure Defect Distributions in Thermal Barrier Coatings
Stephanie A. Wimmer,
Stephanie A. Wimmer
Naval Research Laboratory, Washington, DC
Search for other works by this author on:
Virginia G. DeGiorgi,
Virginia G. DeGiorgi
Naval Research Laboratory, Washington, DC
Search for other works by this author on:
Edward P. Gorzkowski,
Edward P. Gorzkowski
Naval Research Laboratory, Washington, DC
Search for other works by this author on:
John Drazin
John Drazin
American Society for Engineering Education (ASEE), Washington, DC
Search for other works by this author on:
Stephanie A. Wimmer
Naval Research Laboratory, Washington, DC
Virginia G. DeGiorgi
Naval Research Laboratory, Washington, DC
Edward P. Gorzkowski
Naval Research Laboratory, Washington, DC
John Drazin
American Society for Engineering Education (ASEE), Washington, DC
Paper No:
IMECE2017-70405, V002T02A014; 9 pages
Published Online:
January 10, 2018
Citation
Wimmer, SA, DeGiorgi, VG, Gorzkowski, EP, & Drazin, J. "Computational Three-Dimensional Microstructure Defect Distributions in Thermal Barrier Coatings." Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 2: Advanced Manufacturing. Tampa, Florida, USA. November 3–9, 2017. V002T02A014. ASME. https://doi.org/10.1115/IMECE2017-70405
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Deformation of Plasma Sprayed Thermal Barrier Coatings
J. Eng. Gas Turbines Power (July,2000)
Thermal Barrier Coating Life Prediction Model Development
J. Eng. Gas Turbines Power (October,1988)
Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilizing PPM Levels of the Highly Reactive Elements Lanthanum and Yttrium
J. Eng. Gas Turbines Power (January,1999)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Short-Pulse Collimated Radiation in a Participating Medium Bounded by Diffusely Reflecting Boundaries
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3