This paper presents an initial experimental and numerical study on a novel concept of integrated tensegrity/origami morphing structures. Both tensegrity and origami are known for their potential transformative roles in applications in fields which exist at the interplay of shape, size, and function. Their integration, proposed here for the first time, is based on the interest in uniting the strengths of origami (membrane integration and folding capabilities) with the strengths of tensegrity (minimal mass and controllable rigidity). In order to achieve morphing capabilities while retaining low mass, the considered structures possess intrinsic material actuation provided by shape memory alloy (SMA) members. Two different representative structures of the proposed concept are studied. The first corresponds to a tensegrity/origami cylinder based on the double-helix tensegrity topology. Shape memory alloy wires play the role of the tensile members of the tensegrity structure while foldable surface components play the role of compressive members. The second structure corresponds to a tensegrity plate, which although not having a continuous dense surface, can be morphed in novel ways using origami principles. Fabrication of experimental prototypes and evaluation of the observed structural transformation are presented. Finite element analysis is performed to numerically evaluate the characteristics of the novel proposed structures. This initial study shows that the integration of tensegrity and origami results in a powerful combination that provides structural stability, flexibility in design and lightweight actuation mechanisms while allowing for significant deflections during morphing.
Skip Nav Destination
ASME 2015 International Mechanical Engineering Congress and Exposition
November 13–19, 2015
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5752-6
PROCEEDINGS PAPER
An Experimental and Numerical Study of Shape Memory Alloy-Based Tensegrity/Origami Structures
John L. Rohmer,
John L. Rohmer
Texas A&M University, College Station, TX
Search for other works by this author on:
Edwin A. Peraza Hernandez,
Edwin A. Peraza Hernandez
Texas A&M University, College Station, TX
Search for other works by this author on:
Robert E. Skelton,
Robert E. Skelton
University of California, San Diego, La Jolla, CA
Search for other works by this author on:
Darren J. Hartl,
Darren J. Hartl
Texas A&M University, College Station, TX
Search for other works by this author on:
Dimitris C. Lagoudas
Dimitris C. Lagoudas
Texas A&M University, College Station, TX
Search for other works by this author on:
John L. Rohmer
Texas A&M University, College Station, TX
Edwin A. Peraza Hernandez
Texas A&M University, College Station, TX
Robert E. Skelton
University of California, San Diego, La Jolla, CA
Darren J. Hartl
Texas A&M University, College Station, TX
Dimitris C. Lagoudas
Texas A&M University, College Station, TX
Paper No:
IMECE2015-51928, V009T12A064; 10 pages
Published Online:
March 7, 2016
Citation
Rohmer, JL, Peraza Hernandez, EA, Skelton, RE, Hartl, DJ, & Lagoudas, DC. "An Experimental and Numerical Study of Shape Memory Alloy-Based Tensegrity/Origami Structures." Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanics of Solids, Structures and Fluids. Houston, Texas, USA. November 13–19, 2015. V009T12A064. ASME. https://doi.org/10.1115/IMECE2015-51928
Download citation file:
124
Views
0
Citations
Related Proceedings Papers
Related Articles
The Analysis of Tensegrity Structures for the Design of a Morphing Wing
J. Appl. Mech (July,2007)
Distributed Actuation and Control of a Morphing Tensegrity Structure
J. Dyn. Sys., Meas., Control (July,2020)
A Numerical Method for Simulating Nonlinear Mechanical Responses of Tensegrity Structures Under Large Deformations
J. Appl. Mech (November,2013)
Related Chapters
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition